Skip to main content
Log in

Variations in Electrical Characteristics of Near-Surface Atmosphere during Strong Earthquakes: Observation Results

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—Variations in the vertical electric field and atmospheric current in the near-surface atmosphere, accompanying strong earthquakes, are analyzed. The analysis is based on the data of the Center for Geophysical Monitoring in Moscow (CGM) and Geophysical observatory “Mikhnevo” of the Sadovsky Institute of Geosphere Dynamics of Russian Academy of Sciences (IDG RAS). We considered seismic events that occurred when the electric field and atmospheric current were not disturbed by anthropogenic sources and natural impacts unrelated to earthquakes. It is noted that the earthquakes are accompanied by the increased local variations in the electric field in the period of arrival of seismic waves at the observation point and variations associated with the source region of the seismic event. In the latter case, the effect appears as a bay-like decrease and increase and as alternating variations in the vertical gradient of the electric potential. Simultaneously, the earthquakes are accompanied by the increased variations in the atmospheric current. For the first time it is shown that the main shock is accompanied by the increased variations in the electrical characteristics of the near-surface atmosphere at significant distances from the seismic source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. And other seismic events, e.g., mass explosions in quarries.

  2. The maximum amplitude E* is the maximum deviation of Еz value after the main shock relative to the trend calculated by the method described in (Bakhmutskii, 2011).

  3. The beginning of the induced variation was determined by a sharp change in the Ez(t) amplitude against background trend (Hatton et al., 1989); the end was determined by the rise of the variation to its background values.

  4. The period was defined as a regular interval in which the Ez(t) values repeated.

  5. The linear regression equation and its confidence interval were    calculated using the method described in (Riabova, 2020).

  6. The beginning of induced variations was determined by a sharp change in the amplitude of Ez(t) against background trend (Hatton et al., 1989).

  7. For example, for the events accompanied by alternating Ez variations, distances R range from 2331 to 14 948 km.

REFERENCES

  1. Adushkin, V.V., Loktev, D.N., and Spivak, A.A., The seismoelectric effect based on the data of measurements at the Mikhnevo Geophysical Observatory, Dokl. Earth Sci., 2016a, vol. 467, no. 2, pp. 364–366.

    Article  Google Scholar 

  2. Adushkin, V.V., Ovchinnikov, V.M., Sanina, I.A., and Riznichenko, O.Yu., Mikhnevo: from seismic station no. 1 to a modern geophysical observatory, Izv. Phys. Solid Earth, 2016b, vol. 52, no. 1, pp. 105−116.

    Article  Google Scholar 

  3. Adushkin, V.V., Solov’ev, S.P., and Spivak, A.A., Elektricheskie polya tekhnogennykh i prirodnykh protsessov (Electrical Fields of Man-Made and Natural Processes), Moscow: GEOS, 2018.

  4. Alekseev, A.S. and Aksenov, V.V., Electric field in the source zone of earthquakes, Dokl. Earth Sci., 2003, vol. 392, no. 7, pp. 978–982.

    Google Scholar 

  5. Anisimov, S.V. and Mareev, E.A., Aeroelectrical structures in the atmosphere, Dokl. Akad. Nauk, 2000, vol. 371-1, pp. 101–104.

  6. Bakhmutskii, M.L., Algorithm for identifying the trend of noisy large time series, Program. Produkty Sist., 2011, no. 4, pp. 36–40.

  7. Baryshev, V.I., Vaag, L.L., Gavrilov, B.G., and Poletaev, A.S., Surface vertical atmospheric current sensor, in Sb. nauchn. tr. IDG RAN: Problemy vzaimodeistvuyushchikh geosfer (Collect. Pap. IDG RAS: Problems of Interacting Geospheres), Moscow: GEOS, 2009, pp. 358–364.

  8. Chavez, O., Perez-Enrıquez, R., Cruz-Abeyro, J.A., Millan-Almaraz, J.R., Kotsarenko, A., and Rojas, E., Detection of electromagnetic anomalies of three earthquakes in Mexico with an improved statistical method, Nat. Hazards Earth Syst. Sci., 2011, vol. 11, no. 7, pp. 2021–2027.

    Article  Google Scholar 

  9. Firstov, P.P., Makarov, E.O., and Akbashev, R.R., Monitoring of the concentration of soil gases on Petropavlovsk-Kamchatsky geodynamical test site in relation with the forecast of strong earthquakes, Seism. Prib., 2015, vol. 51, no. 1, pp. 60–80.

    Google Scholar 

  10. Frenkel’, Ya.I., On the theory of seismic and seismoelectric phenomena in moist soil, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1944, vol. 8, no. 4, pp. 133–150.

    Google Scholar 

  11. Freund, F.T., Takeuchi, A., and Lau, B.W., Electric currents streaming out of stressed igneous rocks—A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth, 2006, vol. 31, nos. 4–9, pp. 389–396.

    Article  Google Scholar 

  12. Freund, F.T., Kulahci, I., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., and Freund, M.M., Air ionization at rock surface and pre-earthquake signals, J. Atmos. Sol.-Terr. Phys., 2009, vol. 71, no. 17, pp. 1824–1834.

    Article  Google Scholar 

  13. Golitsyn, G.S. and Klyatskin, V.I., Oscillations in the atmosphere caused by movements of the Earth’s surface, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 1967, vol. 3, no. 10, pp. 1044–1052.

    Google Scholar 

  14. Gokhberg, M.B. and Shalimov, S.L., Vozdeistvie zemletryasenii i vzryvov na ionosferu (Impact of Earthquakes and Explosions on the Ionosphere), Moscow: Nauka, 2008.

  15. Guglielmi, A.V. and Zotov, O.D., Magnetic perturbations before the strong earthquakes, Izv. Phys. Solid Earth, 2012, vol. 48, no. 2, pp. 171−173.

    Article  Google Scholar 

  16. Gokhberg, M.B., Morgunov, V.A., and Pokhotelov, O.A., Seismoelektromagnitnye yavleniya (Seismic Electromagnetic Phenomena), Moscow: Nauka, 1988.

  17. Gyulai, Z. and Hartly, D., Elektrische leitfähigkeit verformer steinsalzkristalle, Z. Phys., 1928, vol. 51, nos. 5–6, pp. 378–387.

    Article  Google Scholar 

  18. Hao, J.G., Tang, T.M., and Li, D.R., A kind of information on short–term and imminent earthquake precursors:–research on atmospheric electric field anomalies before earthquakes, Acta Seismol. Sinica, 1998, vol. 11, no. 1, pp. 121–131.

    Article  Google Scholar 

  19. Hatton, L., Worthington, M.H., and Makin, J., Seismic Data Processing: Theory and Practice, Oxford: Blackwell Scientific, 1986.

    Google Scholar 

  20. Hattori, K., ULF Geomagnetic changes associated with large earthquakes, Terr. Atmos. Oceanic Sci., 2004, vol. 15, no. 3, pp. 329–360.

    Article  Google Scholar 

  21. Hayakawa, M., Atmospheric and Ionospheric Electromagnetic Phenomena Associated with Earthquakes, Tokyo: TERRAPUB, 1999.

    Google Scholar 

  22. Hayakawa, M., Earthquake Prediction Studies: Seismo-Electromagnetics, Tokyo: TERRAPUB, 2013.

    Google Scholar 

  23. Israelsson, S., On the conception “Fair weather condition” in atmospheric electricity, Pure Appl. Geophys., 1978, vol. 116, pp. 149–158.

    Article  Google Scholar 

  24. Ivanov, A.G., Seismoelectric effect of the second kind, Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz., 1940, no. 5, pp. 599–626.

  25. Johnston, M.J.S., Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys., 1997, vol. 18, no. 5, pp. 441–476.

    Article  Google Scholar 

  26. Kachakhidze, N., Electrical field potential gradient of atmosphere as a possible precursor of earthquakes, Bull. Georgian Natl. Acad. Sci., 2000, vol. 161, no. 3, pp. 32–43.

    Google Scholar 

  27. Kleimenova, N.G., Kozyreva, O.V., Kubicki, M., and Michnowski, S., Morning polar substorms and variations in the atmospheric electric field, Geomagn. Aeron., 2010, vol. 50, no. 1, pp. 48–57.

    Article  Google Scholar 

  28. Koike, K., Yoshinaga, T., Ueyama, T., and Asaue, H., Increased radon-222 in soil gas because of cumulative seismicity at active faults, Earth, Planets Space, 2014, vol. 66, artic. 57.

  29. Kondo, G., The variation of the atmospheric electric field at the time of earthquake, Mem. Kakioka Magn. Obs., 1968, vol. 13, no. 1, pp. 11–23.

    Google Scholar 

  30. Korsunova, L.P., Khegai, V.V., Mikhailov, Yu.M., and Smirnov, S.E., Regularities in the manifestation of earthquake precursors in the ionosphere and near-surface atmospheric electric fields in Kamchatka, Geomagn. Aeron., 2013, vol. 53, no. 2, pp. 227–233.

    Article  Google Scholar 

  31. Liperovsky, V.A., Meister, C.-V., Liperovskaya, E.V., Davidov, V.F., and Bogdanov, V.V., On the possible influence of radon and aerosol injection into the atmosphere and ionosphere before earthquakes, Nat. Hazards Earth Syst. Sci., 2005, vol. 5, no. 6, pp. 783–789.

    Article  Google Scholar 

  32. Loktev, D.N., Spivak, A.A., and Volosov, S.G., Seismoelectric effects according to observations at the geophysical observatory “Mikhnevo” IDG RAS, in Sb. nauchn. tr. IDG RAN: Dinamicheskie protsessy v geosferakh vyp. 7 (Collect. Pap IDG RAS: Dynamic Processes in Geospheres, vol. 7), Moscow: GEOS, 2015, pp. 107–112.

  33. Migunov, N.I., On the use of seismoelectric phenomena for studying the stressed state of saturated rocks, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1984, no. 9, pp. 20–28.

  34. Mikhailov, O.V., Haartsen, M.V., and Toksoz, M.N., Electroseismic investigation of the shallow subsurface: Field measurements and numerical modeling, Geophysycs, 1997, vol. 62, pp. 97–105.

    Article  Google Scholar 

  35. Mikhailov, Yu.M., Mikhailova, G.A., Kapustina, O.V., Depueva, A.Kh., Buzevich, A.V., Druzhin, G.I., Smir-nov, S.E., and Firstov, P.P., Variations in different atmospheric and ionospheric parameters in the earthquake preparation periods at Kamchatka: the preliminary results, Geomagn. Aeron., 2002, vol. 42, no. 6, pp. 769–776.

    Google Scholar 

  36. Mikhailov, Yu.M., Mikhailova, G.A., Kapustina, O.V., Druzhin, G.I., and Smirnov, S.E., Electric and electromagnetic processes in the near-Earth atmosphere before earthquakes on Kamchatka, Geomagn. Aeron., 2006, vol. 46, no. 6, pp. 796–808.

    Article  Google Scholar 

  37. Molchanov, O.A. and Hayakawa, M., Seismo-Electromagnetics and Related Phenomena. History and Latest Results, Tokyo: TERRAPUB, 2008.

    Google Scholar 

  38. Morgunov, V.A., Spatial inhomogeneities of the electric field as a factor of litho-ionospheric connections, in Elektricheskoe vzaimodeistvie geosfernykh obolochek (Electric Interaction of Geospheric Shells), Moscow: OIFZ RAN, 2000, pp. 106–113.

  39. Morgunov, V.A. and Mal’tsev, S.A., Model of a quasi-stationary electric field of lithospheric nature, Sb. nauchn. tr. 5 Ross. konf. po atmosfernomu elektrichestvu, tom 2 (Collect. Pap. 5th Russ. Conf. on Atmospheric Electricity, vol. 2), Vladimir, 2003, Vladimir: Tranzit IKS, 2003, pp. 59–61.

  40. Pulinets, S.A. and Boyarchuk, K., Ionospheric Precursors of Earthquakes, Berlin: Springer, 2004.

    Google Scholar 

  41. Rudakov, V.P., Emanatsionnyi monitoring geosred i protsessov (Emanation Monitoring of Geo-Environments and Processes), Moscow: Nauchn. mir, 2009.

  42. Rulenko, O.P., Immediate earthquake precursors in lower atmospheric electricity, Vulkanol. Seismol., 2000, no. 4, pp. 57–68.

  43. Rulenko, O.P., Ivanov, A.V., and Shumeiko, A.V., Short-term atmospheric-electrical precursor to the Kamchatka earthquake of March 6, 1992, M = 6.1, Dokl. Akad. Nauk, 1992, vol. 326, no. 6, pp. 980–982.

    Google Scholar 

  44. Rulenko, O.P., Druzhin, G.I., and Vershinin, E.F., Atmospheric electric field and natural electromagnetic radiation: measurements prior to the Kamchatka earthquake, November 13, 1993, M = 7.0, Dokl. Earth Sci., 1996, vol. 349, no. 5, pp. 832–834.

    Google Scholar 

  45. Riabova, S.A., Time variations of magnetotelluric function (magnetic tipper) and their possible relationship with variations of groundwater level, Probl. Nedropol’zovaniya, 2020, vol. 25, no. 25, pp. 166–172.

    Google Scholar 

  46. Seismoionosfernye i seismoelektromagnitnye protsessy v Baykal’skoi riftovoi zone: Integratsionnye proekty SO RAN, vyp. 35 (Seismoionospheric and Seismoelectromagnetic Processes in the Baikal Rift Zone: SB RAS Integrated Projects, vol. 35), Zherebtsov, G.A., Ed., Novosibirsk: SO RAN, 2012.

    Google Scholar 

  47. Semenov, K.A., Fair weather and elements of atmospheric electricity, in Tr. Gl. Geofiz. Obs. im. A.I. Voeikova, vyp. 455 (Trans. A.I. Voeikov Cent. Geophys. Obs., vol. 455), Leningrad: Gidrometeoizdat, 1982, pp. 112−113.

  48. Serafimova, Yu.K. and Kopylova, G.N., Intermediate-term precursors of large (M ≥ 6.6) Kamchatka earthquakes for the period from 1987 to 2004: A retrospective assessment of their information content for prediction, J. Volcanol. Seismol., 2010, vol. 4, no. 4, pp. 223–231.

    Article  Google Scholar 

  49. Shalimov, S.L., Atmosfernye volny v plazme ionosfery (s geofizicheskimi primerami) (Atmospheric Waves in Ionospheric Plasma (with Geophysical Examples)), Moscow: IFZ RAN, 2018.

  50. Sheremet’eva, O.V., Modeli geomagnitnykh variatsii, obuslovlennykh protsessami v geosfernykh obolochkakh (Models of Geomagnetic Variations due to Processes in Geospheric Envelopes), Petropavlovsk-Kamchatskii: KamGU im. Vitusa Beringa, 2013.

  51. Shuleikin, V.N., Variations in the elements of surface atmospheric electricity before seismic events -causes, forms and scales of manifestation, in Sb. tr. 4 Geofiz. chtenii im. V.V. Fedynskogo “Geofizika XXI stoletiya: 2002 god” (Collect. Pap. V.V. Fedynsky 4th Geophys. Readings “Geophysics of the XXI Century: 2002”), Solodilov, V.N., Ed., Moscow, 2002, Moscow: Nauchn. Mir, 2003, pp. 396–404.

  52. Shved, G.M., Golitsyn, G.S., Ermolenko, S.I., and Kukushkina, A.E., Relationship of the long-period free oscillations of the Earth with atmospheric processes, Dokl. Earth Sci., 2018, vol. 481, no. 1, pp. 958–962.

    Article  Google Scholar 

  53. Sidorin, A.Ya., Predvestniki zemletryasenii (Earthquake Peecursors), Moscow: Nauka, 1992.

  54. Smirnov, S.E., Characteristics of negative anomalies in the quasistatic electric field in the near-Earth atmosphere on Kamchatka, Geomagn. Aeron., 2005, vol. 45, no. 2, pp. 265–269.

    Google Scholar 

  55. Smirnov, S., Association of the negative anomalies of the quasistatic electric field in atmosphere with Kamchatka seismicity, Nat. Hazards Earth Syst. Sci., 2008, vol. 8, no. 4, pp. 745–749.

    Article  Google Scholar 

  56. Sobisevich, L.E., Seismogravitational processes and gravimagnetic disturbances accompanying geophysical catastrophes, Geofizika, 2020, no. 1, pp. 70–76.

  57. Sobisevich, L.E., Sobisevich, A.L., and Kanonidi, K.Kh., Results of the analysis of instrumental observations of anomalous geomagnetic disturbances induced by earthquakes in the geospheres, Mater. II Vseross. semin.-soveshch.: Triggernye effekty v geosistemakh (Pap. II All-Russ. Workshop: Trigger Effects in Geosystems), Adushkin, V.V. and Kocharyan, G.G., Moscow, 2013, Moscow: GEOS, 2013, pp. 329–341.

  58. Sobisevich, L.E., Sobisevich, A.L., and Likhodeev, D.V., Seismogravitational processes accompanying the evolution of seismic focal structures in the lithosphere, Geodinam. Tektonofiz., 2020, vol. 11, no. 1, pp. 53–61.

    Article  Google Scholar 

  59. Sobolev, G.A. and Demin, V.M., Mekhanoelektricheskie yavleniya v Zemle (Mechanoelectric Phenomena in the Earth) Moscow: Nauka, 1980.

  60. Sobolev, G.A. and Ponomarev, A.V., Fizika zemletryasenii i predvestnikov (Physics of Earthquakes and Precursors), Moscow: Nauka, 2003.

  61. Soloviev, S.P. and Spivak, A.A., Electromagnetic effects as a consequence of the heterogeneous structure and differential movements in the Earth’s crust, in Sb. nauchn. statei. IDG RAN: Dinamicheskie protsessy vo vzaimodeistvuyushchikh geosferakh (Collect. Pap IDG RAS: Dynamic Processes in Interacting Geospheres), Moscow: GEOS, 2006, pp. 196–204.

  62. Soloviev, S.P. and Spivak, A.A., Electromagnetic signals generated by the electric polarization during the constrained deformation of rocks, Izv. Phys. Solid Earth, 2009, vol. 45, no. 4, pp. 347−355.

    Article  Google Scholar 

  63. Sorokin, V.M. and Fedorovich, G.V., Fizika medlennykh MGD-voln v ionosfernoi plazme (Physics of Slow MHD Waves in Ionospheric Plasma), Moscow: Energoizdat, 1982.

  64. Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Instruments and techniques for megapolis geophysical monitoring and their application in the Moscow IDG RAS geophysical monitoring Center, Seism. Prib., 2016, vol. 52, no. 2, pp. 65–78.

    Google Scholar 

  65. Spivak, A.A., Rybnov, Yu.S., Soloviev, S.P., and Kharlamov, V.A., Acoustic and electric precursors of severe thunderstorm under megalopolis conditions, Geofiz. Protsessy Biosfera, 2017, vol. 16, no. 4, pp. 81–91.

    Google Scholar 

  66. Spivak, A.A., Rybnov, Yu.S., and Kharlamov, V.A., Variations in geophysical fields during hurricanes and squalls, Dokl. Earth Sci., 2018, vol. 480, no. 2, pp. 788–791.

    Article  Google Scholar 

  67. Spivak, A.A., Riabova, S.A., and Kharlamov, V.A., The electric field in the surface atmosphere of the megapolis of Moscow, Geomagn. Aeron., 2019, vol. 59, no. 4, pp. 467–478.

    Article  Google Scholar 

  68. St-Laurent, F., Derr, J.S., and Freund, F.T., Earthquake lights and the stress-activation of positive hole charge carriers in rocks, Phys. Chem. Earth, 2006, vol. 31, nos. 4–9, pp. 305–312.

    Article  Google Scholar 

  69. Surkov, V.V., Elektromagnitnye effekty pri zemletryaseniyakh i vzryvakh (Electromagnetic Effects of Earthquakes and Explosions), Moscow: MIFI, 2000.

  70. Thompson, A.H. and Gist, G.A., Geophysical applications of electrokinetic conversion, Leading Edge, 1993, vol. 12, no. 12, pp. 1160–1173.

    Article  Google Scholar 

  71. Thompson, R.R., The seismic-electric effect, Geophysics, 1936, vol. 1, no. 3, pp. 327–335.

    Article  Google Scholar 

  72. Utkin, V.I. and Yurkov, A.K., Radon as a tracer of tectonic movements, Russ. Geol. Geophys. 2010, vol. 51, no. 2, pp. 220–227.

    Article  Google Scholar 

  73. Zhu, Z. and Toksoz, M.N., Seismoelectric and seismomagnetic measurements in fractured borehole models, Geophysics, 2005, vol. 70, no. 4, pp. F45–F51.

    Article  Google Scholar 

Download references

Funding

The study was carried out under state contract (projects nos. AAAA-A-19-119021890067-0 and 0146-2019-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Riabova.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riabova, S.A., Spivak, A.A. Variations in Electrical Characteristics of Near-Surface Atmosphere during Strong Earthquakes: Observation Results. Izv., Phys. Solid Earth 57, 547–558 (2021). https://doi.org/10.1134/S1069351321040078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351321040078

Keywords:

Navigation