Skip to main content
Log in

Competition Between Different Decay Modes in the Isotopes of Actinide Nuclei

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The probable decay modes of actinide nuclei are \(\alpha\), \(\beta ^{+}\), \(\beta ^{-}\), proton decay and spontaneous fission. Dominant decay mode is identified by studying the competition between different decay modes. Half-lives of \(\alpha\), \(\beta ^{+}\), \(\beta ^{-}\), proton decay and spontaneous fission are studied using Coulomb and proximity potential model, modified generalized liquid drop model, effective liquid drop model and many semi-empirical relations. Half-lives produced by the present work are compared with that of experiments. By studying the different decay modes in the actinide region, we have identified two proton emitters, 92 new \(\beta ^{-}\) emitters, 74 new \(\alpha\)-emitters and 115 new spontaneous fissionable isotopes. These newly identified isotopes with different half-lives and decay energies find an important application in the field of medicine and industry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Yes

Code Availability

The authors did not use any codes for the submitted work.

References

  • Back BB, Hansen O, Britt HC, Garrett JD (1974) Fission of doubly even actinide nuclei induced by direct reactions. Phys Rev C 9:1924. https://doi.org/10.1103/PhysRevC.9.1924

    Article  Google Scholar 

  • Bai GCV, Agnes RN (2017) Alpha decay and cluster decay of some neutron-rich actinide nuclei. Pramana 88:43

    Google Scholar 

  • Balasubramaniam M, Gupta RK (1999) Heavy-ion emission in spontaneous decays of \(^{249,252}\rm Cf\) nuclei. Phys Rev C 60:064316

    Google Scholar 

  • Barwick SW, Price PB, Ravn HL, Hourani E, Hussonnois M (1986) Systematics of spontaneous emission of intermediate mass fragments from heavy nuclei. Phys Rev C 34:362

    Google Scholar 

  • Barwick SW, Price PB, Stevenson JD (1985) Radioactive decay of \(^{232}\rm U\) by \(^{24}\rm Ne\rm\) emission. Phys Rev C 31:1984

    Google Scholar 

  • Bohr N, Wheeler JA (1939) The mechanism of nuclear fission. Phys Rev 56:426. https://doi.org/10.1103/PhysRev.56.426

    Article  MATH  Google Scholar 

  • Bonetti R, Fioretto E, Migliorino C, Pasinetti A, Barranco F, Vigezzi E, Broglia RA (1990) Revising the chart of the nuclides by exotic decay. Phys Lett B 241:179

    Google Scholar 

  • Bonetti R, Guglielmetti A, Greiner W, Gupta RK (1999) Heavy elements and related new phenomena, vol II. World Scientific, Singapore

    Google Scholar 

  • Borzov IN, Goriely S, Pearson JM (1997) Microscopic calculations of \(\beta\)-decay characteristics near the a= 130 r-process peak. Nucl Phys A 621:307

    Google Scholar 

  • Buck B, Merchant AC, Perez SM (1991) Recent developments in the theory of alpha decay. Mod Phys Lett A 6:2453

    Google Scholar 

  • Buck B, Merchant AC, Perez SM (1998) Systematic study of exotic clustering in even-even actinide nuclei. Phys Rev C 58:2049. https://doi.org/10.1103/PhysRevC.58.2049

    Article  Google Scholar 

  • Chowdhury PR, Samanta C, Basu DN (2008) Search for long lived heaviest nuclei beyond the valley of stability. Phys Rev C 77:044603

    Google Scholar 

  • Condon E, Gurney R (1928) Wave Mechanics and Radioactive Disintegration. Nature 122:439

    Google Scholar 

  • Cui J, Zhang Y, Zhang S, Wang Y (2016) Systematic study on \(\alpha\)-decay half-lives of bi isotopes. Int J Mod Phys E 25:1650056

    Google Scholar 

  • Cui JP, Zhang YL, Zhang S, Wang YZ et al (2018) \(\alpha\)-decay half-lives of superheavy nuclei. Phys Rev C 97:014316

    Google Scholar 

  • Denisov VY, Ikezoe H (2005) \(\alpha\)-nucleus potential for \(\alpha\)-decay and sub-barrier fusion. Phys Rev C 72:064613

    Google Scholar 

  • Denisov VY, Khudenko A (2009) \(\alpha\)-Decay half-lives, \(\alpha\)-capture, and \(\alpha\)-nucleus potential. At Data Nucl Data Tables 95:815

    Google Scholar 

  • Dorn DW (1961) Predictions of spontaneous fission half-lives for heavy nuclei. Phys Rev 121:1740

    Google Scholar 

  • Engel J, Bender M, Dobaczewski J, Nazarewicz W, Surman R (1999) \(\beta\) Decay rates of r-process waiting-point nuclei in a self-consistent approach. Phys Rev C 60:014302

    Google Scholar 

  • Flerov GN, Petrzhak KA (1940) Spontaneous fission of uranium. Phys Rev 58:275

    Google Scholar 

  • Gamow G (1928) Zur quantentheorie des atomkernes. Z Phys 51:204

    MATH  Google Scholar 

  • Glasoe GN, Steigman J (1940) Radioactive products from gases produced in uranium fission. Phys Rev 58:1

    Google Scholar 

  • Gonçalves M, Teruya N, Tavares O, Duarte SB (2017) Two-proton emission half-lives in the effective liquid drop model. Phys Lett B 774:14

    Google Scholar 

  • Greiner WSM, Oberacker V (1980) Sov. J. Part, Nucl, p 11

  • Heßberger FP (2017) Spontaneous fission properties of superheavy elements. Eur Phys J A 53:75

    Google Scholar 

  • Holden NE, Hoffman DC (2000) Spontaneous fission half-lives for ground-state nuclide (technical report). Pure Appl Chem 72:1525

    Google Scholar 

  • Hooshyar MA, Reichstein I, Malik FB (2005) Nuclear fission and cluster radioactivity: an energy-density functional approach. Springer, New York

    Google Scholar 

  • Hosmer PT, Schatz H, Aprahamian A, Arndt O, Clement R, Estrade A, Kratz K-L, Liddick S, Mantica P, Mueller W et al (2005) Half-life of the doubly magic r-process nucleus \(^{78}\rm Ni\). Phys Rev Lett 94:112501

    Google Scholar 

  • Hourani E, Hussonnois M, Stab L, Brillard L, Gales S, Schapira JP (1985) Evidence for the radioactive decay of \(^{226}\rm Ra\) by \(^{14}\rm C\rm\) emission. Phys Lett B 160:375

    Google Scholar 

  • Karpov AV, Zagrebaev VI, Martinez Palenzuela Y, Felipe Ruiz L, Greiner W (2012) Decay properties and stability of heaviest elements. Int J Mod Phys E 21:1250013

    Google Scholar 

  • Koura H, Tachibana T, Uno M, Yamada M (2005) Nuclidic mass formula on a spherical basis with an improved even-odd term. Progress Theor Phys 113:305

    Google Scholar 

  • Kumar S, Balasubramaniam M, Gupta RK, Münzenberg G, Scheid W (2003) The formation and decay of superheavy nuclei produced in 48ca-induced reactions. J Phys G Nucl Part Phys 29:625

    Google Scholar 

  • Kumar S, Rani R, Kumar R (2008) Shell closure effects studied via cluster decay in heavy nuclei. J Phys G Nucl Part Phys 36:015110

    Google Scholar 

  • Li H, Ren Z (2013) Shell model calculations for the \(\beta\)-decays of z = 9–13 nuclei. J Phys G: Nucl Part Phys 40:105110

    Google Scholar 

  • Manjunatha HC (2018) Parameterization of fission barrier heights of medium, heavy and super heavy nuclei. Indian J Phys 92:507

    Google Scholar 

  • Manjunatha HC, Sowmya N (2018a) Competition between spontaneous fission ternary fission cluster decay and alpha decay in the super heavy nuclei of z = 126. Nucl Phys A 969:68

    Google Scholar 

  • Manjunatha HC, Sowmya N (2018b) Decay modes of superheavy nuclei z = 124. Int J Mod Phys E 27:1850041

    Google Scholar 

  • Manjunatha HC, Sridhar KN, Sowmya N (2018) Investigations of the synthesis of the superheavy element z= 122. Phys Rev C 98:024308

    Google Scholar 

  • Manjunatha H, Sridhar G, Sowmya N, Gupta P, Ramalingam H (2021) A systematic study of alpha decay in actinide nuclei using modified generalized liquid drop model. Int J Mod Phys E 30:2150013

    Google Scholar 

  • Moody KJ, Hulet EK, Wang S, Price PB (1989) Heavy-fragment radioactivity of \(^{234}\rm U\). Phys Rev C 39:2445

    Google Scholar 

  • Möller P, Pfeiffer B, Kratz K-L (2003) New calculations of gross \(\beta\)-decay properties for astrophysical applications: speeding-up the classical r process. Phys Rev C 67:055802

    Google Scholar 

  • Möller P, Nix JR, Wyers WD, Swiatecki WJ (1997) At. data and nucl. data tables 59, 185 (1995); p. möller, jr nix, and k, L. Kratz, At. Data and Nucl. Data Tables 66:131

  • Nagaraja AM, Manjunatha HC, Sowmya N, Manjunath N, Raj SAC (2020a) Cluster radioactivity of superheavy nuclei \(^{290-310}120\) using different proximity functions. Eur Phys J Plus 135:1

    Google Scholar 

  • Nagaraja AM, Manjunatha HC, Sowmya N, Raj S (2020b) Cluster radioactivity in superheavy nuclei \(^{299-302}120\). Indian J Pure Appl Phys 58:207

    Google Scholar 

  • Ni D, Ren Z (2010) New approach for \(\alpha\)-decay calculations of deformed nuclei. Phys Rev C 81:064318

    Google Scholar 

  • Ni D, Ren Z (2012) Binding energies, \(\alpha\)-decay energies, and \(\alpha\)-decay half-lives for heavy and superheavy nuclei. Nucl Phys A 893:13

    Google Scholar 

  • Nishimura S, Li Z, Watanabe H, Yoshinaga K, Sumikama T, Tachibana T, Yamaguchi K, Kurata-Nishimura M, Lorusso G, Miyashita Y et al (2011) \(\beta\)-decay half-lives of very neutron-rich kr to tc isotopes on the boundary of the r-process path: an indication of fast r-matter flow. Phys Rev Lett 106:052502

    Google Scholar 

  • Nuclear reactions video. http://nrv.jinr.ru/nrv/webnrv/fusion/reactions.html

  • Pansaers JK (1896) Paris 122 (1896) 420. JK Pansaers, Paris 122:521

    Google Scholar 

  • Petrzhak KA, Flerov GN (1940) Cr (dokl.) akad. sci. urss 28, 500. J Phys Ussr 3:275

    Google Scholar 

  • Poenaru D, Nagame Y, Gherghescu R, Greiner W (2002a) Erratum: systematics of cluster decay modes. Phys Rev C 66:049902

    Google Scholar 

  • Poenaru DN, Nagame Y, Gherghescu RA, Greiner W (2002b) Systematics of cluster decay modes. Phys Rev C 65:054308

    Google Scholar 

  • Price PB, Stevenson JD, Barwick SW, Ravn HL (1985) Discovery of radioactive decay of ra 222 and ra 224 by c 14 emission. Phys Rev Lett 54:297

    Google Scholar 

  • Rose HJ, Jones GA (1984) A new kind of natural radioactivity. Nature 307:245

    Google Scholar 

  • Rutherford E (1904) Disintegration of the radioactive elements, Harper’s Monthly Magazine, p 279

  • Samanta C, Chowdhury PR, Basu DN (2007) Predictions of alpha decay half lives of heavy and superheavy elements. Nucl Phys A 789:142

    Google Scholar 

  • San-Tsiang T, Zah-Wei H, Chastel R, Vigneron L (1947) Nouveaux modes de fission de l’curanium. tripartition et quadripartition. J Phys Radium 8:165

    Google Scholar 

  • Sandulescu A Poenaru DN, Greiner W (1980) New type of decay of heavy nuclei intermediate between fission and. cap alpha. decay. Sov J Particles Nucl (Engl Transl United States) 11

  • Santhosh KP, Jose TA (2019) Alpha and cluster decay using modified generalized liquid drop model with iso-spin dependent pre-formation factor. Nucl Phys A 992:121626

    Google Scholar 

  • Sawicka M, Matea I, Grawe H, Grzywacz R, Pfützner M, Lewitowicz M, Daugas JM, Brown BA, Lisetskiy A, Becker F et al (2004) Beta-decay of \(^{71}\rm Co\) and \(^{73}\rm Co\rm\). Eur Phys J A Hadrons Nuclei 22:455

    Google Scholar 

  • Sharma K, Sawhney G, Sharma MK (2017) Spontaneous fission and competing ground state decay modes of actinide and transactinide nuclei 96:054307

    Google Scholar 

  • Sorlin O, Donzaud C, Axelsson L, Belleguic M, Béraud R, Borcea C, Canchel G, Chabanat E, Daugas JM, Emsallem A et al (1999) Beta decay half-lives of neutron rich \(\rm Ti-Co\) isotopes around n= 40. Nucl Phys A 660:3

    Google Scholar 

  • Sowmya N, Manjunatha HC (2019) Competition between different decay modes of superheavy element z = 116 and synthesis of possible isotopes. Braz J Phys 49:874

    Google Scholar 

  • Sowmya N, Manjunatha HC (2020a) Investigations on different decay modes of darmstadtium. Phys Part Nucl Lett 17:370

    Google Scholar 

  • Sowmya N, Manjunatha H (2020b) Investigations on the synthesis and decay properties of roentgenium. Braz J Phys 1:281–31

  • Sowmya N, Manjunatha HC, Dhananjaya N (2019) Competition between different decay modes of \(^{281}\rm Ds\). In: booktitle Proceedings of the fourteenth biennial DAE-BRNS symposium on nuclear and radiochemistry: book of abstracts

  • Sowmya N, Manjunatha HC, Dhananjaya N, Nagaraja AM (2020a) Competition between binary fission, ternary fission, cluster radioactivity and alpha decay of \(^{281}\rm Ds\). J Radioanal Nucl Chem 323:1347

    Google Scholar 

  • Sowmya N, Manjunatha HC, Gupta P (2020b) Competition between decay modes of superheavy nuclei. Int J Mod Phys 29(10):1347–1351

  • Sowmya N, Manjunatha HC, Gupta PD, Dhananjaya N (2020c) Competition between cluster and alpha decay in odd z superheavy nuclei pp 1347–1351\(111\le \rm Z\le 125\). Braz J Phys 1

  • Sridhar KN, Manjunatha HC, Ramalingam HB (2018) Search for possible fusion reactions to synthesize the superheavy element z= 121. Phys Rev C 98:064605

    Google Scholar 

  • Sridhar GR, Manjunatha HC, Sowmya N, Gupta P, Ramalingam HB (2020) Atlas of cluster radioactivity in actinide nuclei. Eur Phys J Plus 135:1

    Google Scholar 

  • Swiatecki W (1955) Systematics of spontaneous fission half-lives. Phys Rev 100:937

    Google Scholar 

  • Wang YZ, Dong JM, Peng BB, Zhang HF (2010) Fine structure of \(\alpha\) decay to rotational states of heavy nuclei. Phys Rev C 81:067301

    Google Scholar 

  • Wang YZ, Wang SJ, Hou ZY, Gu JZ et al (2015) Systematic study of \(\alpha\)-decay energies and half-lives of superheavy nuclei. Phys Rev C 92:064301

    Google Scholar 

  • Warda M, Zdeb A, Robledo LM (2018) Cluster radioactivity in superheavy nuclei. Phys Rev C. https://doi.org/10.1103/PhysRevC.98.041602

    Article  Google Scholar 

  • Xiao-Ping Z, Zhong-Zhou R, Qi-Jun Z (2007) Simple formula of \(\beta\)+-decay half-lives of nuclei far from \(\beta\)-stable line. Commun Theor Phys 48:1072

    Google Scholar 

  • Xu ZY, Nishimura S, Lorusso G, Browne F, Doornenbal P, Gey G, Jung H-S, Li Z, Niikura M, Söderström P-A et al (2014) \(\beta\)-decay half-lives of \(^{76,77}\rm Co,^{79,80}\rm Ni\rm\) and \(^{81}\rm Cu\rm\): experimental indication of a doubly magic \(^{78}\rm Ni\rm\). Phys Rev Lett 113:032505

    Google Scholar 

  • Xu C, Ren Z (2005) Systematical law of spontaneous fission half-lives of heavy nuclei. Phys Rev C 71:014309

    Google Scholar 

  • Xu C, Ren Z, Guo Y (2008) Competition between \(\alpha\) decay and spontaneous fission for heavy and superheavy nuclei. Phys Rev C 78:044329. https://doi.org/10.1103/PhysRevC.78.044329

    Article  Google Scholar 

  • Zhang S, Zhang Y, Cui J, Wang Y (2017) Improved semi-empirical relationship for \(\alpha\)-decay half-lives. Phys Rev C 95:014311. https://doi.org/10.1103/PhysRevC.95.014311

    Article  Google Scholar 

  • Zong-Qiang S, Liang-Ping S, Ying M, Ji-Gang H, Jian-Fa Q (2014) Competition between \(\alpha\)-decay and \(\beta\)-decay for heavy and superheavy nuclei. Chin Phys C 38:124101

    Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author state that all the authors are part of the work and equally contributed for the manuscript in the present form.

Corresponding authors

Correspondence to H. C. Manjunatha or N. Sowmya.

Ethics declarations

Conflict of interest

We are submitting the manuscript entitled “Competition between different decay modes in the isotopes of actinide nuclei” for kind publication in your esteem Journal.

Ethics Approval

We abide the rules and guidelines of ethics.

Consent to Participate

All listed authors have approved the manuscript before submission, including the names and order of authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunatha, H.C., Sowmya, N. & Gupta, P.S.D. Competition Between Different Decay Modes in the Isotopes of Actinide Nuclei. Iran J Sci Technol Trans Sci 45, 2201–2217 (2021). https://doi.org/10.1007/s40995-021-01206-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-021-01206-0

Keywords

Navigation