Skip to main content
Log in

Effect of Steel Fibres on Flexural Toughness of Concrete and RC Beams

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The study concerns the investigation of flexural behaviour of steel fibre reinforced concrete (SFRC) and conventional reinforce concrete (RC) beams incorporating steel fibre. Hooked-end steel fibres were used at the contents of 20 kg/m3, 40 kg/m3, 60 kg/m3, 80 kg/m3 and 100 kg/m3 in production of SFRC specimens and RC beams. Flexural tests were achieved on both SFRC and RC beams. Mechanical properties such as compressive strength, modulus of elasticity, flexural strength, toughness and toughness index were determined on SFRC specimens. Load–deflection curves were obtained from the beam flexural tests. First crack loads and flexural toughness of RC beams were also determined on RC beams. Steel fibres reduced the workability of fresh concretes. The mechanical performances of concretes and RC beams increased with the use of steel fibres. Compressive and flexural strengths of SFRCs have increased up to the 24.5% and 101.6% with increase in steel fibre, respectively. However, a decrease up to the 9.6% was observed in modulus of elasticity of SFRCs. Fibres have controlled the propagation and the widening of cracks. Therefore, considerable improvements were obtained on first crack loads, toughness and ductility of RC beams by addition of steel fibres. Maximum increases in first crack load and toughness of RC beams were 34.5% and 40.5%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Iqbal, S.; Ali, I.; Room, S., et al.: Enhanced mechanical properties of fiber reinforced concrete using closed steel fibers. Mater. Struct. (2019). https://doi.org/10.1617/s11527-019-1357-6

    Article  Google Scholar 

  2. Barros, J.A.O.; Cunha, V.M.C.F.; Ribeiro, A.F.; Antunes, J.A.B.: Post-cracking behaviour of steel fibre reinforced concrete. Mater. Struct. 38(275), 47–56 (2005). https://doi.org/10.1007/BF02480574

    Article  Google Scholar 

  3. Rossi, P.: Mechanical behaviour of metal–fibre reinforced concretes. Cem. Concr. Compos. 14(1), 3–16 (1992). https://doi.org/10.1016/0958-9465(92)90034-S

    Article  Google Scholar 

  4. Soulioti, D.V.; Barkoula, N.M.; Paipetis, A.; Matikas, T.E.: Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain 47, e535–e541 (2011). https://doi.org/10.1111/j.1475-1305.2009.00652.x

    Article  Google Scholar 

  5. Bencardino, F.; Rizzuti, L.; Spadea, G.; Swamy, R.N.: Experimental evaluation of fiber reinforced concrete fracture properties. Compos. Part B Eng. 41(1), 17–24 (2010). https://doi.org/10.1016/j.compositesb.2009.09.002

    Article  Google Scholar 

  6. Banthia, N.; Trottier, J.F.: Concrete reinforced with deformed steel fibres. Part II: toughness characterization. ACI Mater. J. 92(2), 146–154 (1995)

    Google Scholar 

  7. Kurihara, N.; Kunieda, M.; Kamada, T.; Uchida, Y.; Rokugo, K.: Tension softening diagrams and evaluation of properties of steel fibre reinforced concrete. Eng. Fract. Mech. 65, 235–245 (2000). https://doi.org/10.1016/S0013-7944(99)00116-2

    Article  Google Scholar 

  8. Havlikova, I.; Merta, I.; Schneemayer, A.; Vesely, V.; Šimonová, H.; Korycanska, B.; Kersner, Z.: Effect of fibre type in concrete on crack initiation. Appl. Mech. Mater. 769, 308–311 (2015). https://doi.org/10.4028/www.scientific.net/amm.769.308

    Article  Google Scholar 

  9. Şahin, Y.; Köksal, F.: The influences of matrix and steel fibre tensile strengths on the fracture energy of high-strength concrete. Constr. Build. Mater. 25(4), 1801–1806 (2011). https://doi.org/10.1016/j.conbuildmat.2010.11.084

    Article  Google Scholar 

  10. Vandewalle, L.: Influence of the yield strength of steel fibres on the toughness of fibre reinforced high strength concrete. In: Proceedings, the CCMS Symposium, Worldwide Advances in Structural Concrete and Masonry. Chicago, pp. 496–505 (1996)

  11. Eren, O.; Celik, T.: Effect of silica fume and steel fibers on some properties of high-strength concrete. Constr. Build. Mater. 11(7–8), 373–382 (1997). https://doi.org/10.1016/S0950-0618(97)00058-5

    Article  Google Scholar 

  12. Koksal, F.; Ilki, A.; Bayramov, F.; Tasdemir, M.A.: Mechanical behavior and optimum design of SFRC Plates. In: 16th European conference of fracture. Alexandroupolis, Greece, July 3–7, pp. 199–205 (2006). https://doi.org/10.1007/978-1-4020-5104-3_24

  13. Shah, S.P.; Rangan, B.V.: Fiber reinforced concrete properties. ACI Mater. J. 68(2), 126–135 (1971)

    Google Scholar 

  14. Koksal, F.; Eyyubov, C.; Ozcan, D.M.: Effect of steel fibre volume fraction on mechanical properties of concrete. In: 5th International Congress on Advances in Civil Engineering. Istanbul, Turkey, pp. 169–179 (2002)

  15. Gopalaratnam, V.S.; Shah, S.P.; Batson, G.B.; Criswell, M.E.; Ramaksishran, V.; Wecharatara, M.: Fracture toughness of fiber reinforced concrete. ACI Mater. J. 88(4), 339–353 (1991)

    Google Scholar 

  16. Falkner, H.; Henke, V.: Application of steel fibre concrete for underwater concrete slabs. Cem. Concr. Compos. 20(5), 377–385 (1998). https://doi.org/10.1016/S0958-9465(98)00005-5

    Article  Google Scholar 

  17. Gettu, R.; Barragán, B.; Garcia, T.; Ortiz, J.; Justa, R.: Fiber concrete tunnel lining. Concr. Int. 28, 63–69 (2006)

    Google Scholar 

  18. Dinh, H.H.; Parra-Montesinos, G.J.; Wight, J.K.: Shear behavior of steel fiber-reinforced concrete beams without stirrup reinforcement. ACI Struct. J. 107(5), 597–606 (2010)

    Google Scholar 

  19. Kwak, Y.K.; Eberhard, M.O.; Kim, W.S.; Kim, J.: Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct. J. 9(4), 530–538 (2002)

    Google Scholar 

  20. Parra-Montesinos, G.; Wight, J.K.; Dinh, H.; Libbrecht, A.; Padilla, C.: Shear strength of fiber reinforced concrete beams without stirrups. Report No. UMCEE 06-04, University of Michigan, Ann Arbor, MI (2006)

  21. Destree, X.: Free suspended elevated flat slabs of steel fibre reinforced concrete: full scale test results and design. In: Proceedings of the 7th International RILEM Symposium on Fibre Reinforced Concrete. Chennai, India, pp. 941–950 (2008)

  22. Gossla, U.: Flachdecken aus Stahlfaserbeton. Beton- und Stahlbetonbau. 101(2), 94–102 (2006). https://doi.org/10.1002/best.200500461

    Article  Google Scholar 

  23. Michels, J.; Waldmann, D.; Maas, S.; Zurbes, A.: Steel fibers as only reinforcement for flat slab construction–experimental investigation and design. Constr. Build. Mater. 26(1), 145–155 (2012). https://doi.org/10.1016/j.conbuildmat.2011.06.004

    Article  Google Scholar 

  24. Godde, L.; Mark, P.: Redistribution effects of steel fibre reinforced concrete slabs: numerical computation and design [Umlagerungsverhalten von Plattentragwerken aus Stahlfaserbeton: Numerische Berechnung und Bemessung]. Beton- und Stahlbetonbau. 106(6), 350–363 (2011)

    Article  Google Scholar 

  25. Shah, A.A.; Ribakov, Y.: Recent trends in steel fibered high-strength concrete. Mater. Des. 32, 4122–4151 (2011). https://doi.org/10.1016/j.matdes.2011.03.030

    Article  Google Scholar 

  26. Soulioti, D.V.; Barkoula, N.M.; Paipetis, A.; Matikas, T.E.: Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain 47, 535–541 (2011). https://doi.org/10.1111/j.1475-1305.2009.00652.x

    Article  Google Scholar 

  27. Yoo, D.Y.; Tianfeng, Y.; Jun-Mo, Y.; Young-Soo, Y.: Feasibility of replacing minimum shear reinforcement with steel fibers for sustainable high-strength concrete beams. Eng. Struct. 147, 207–222 (2017). https://doi.org/10.1016/j.engstruct.2017.06.004

    Article  Google Scholar 

  28. Behbahani, H.; Nematollahi, B.; Sam, A.; Lai, F.C.: Flexural behavior of steel-fiber-added-RC (SFARC) beams with C30 and C50 classes of concrete. Int. J. Sustain. Constr. Eng. Technol. 3, 54–64 (2012)

    Google Scholar 

  29. Kwak, Y.K.; Marc, O.E.; Woo-Suk, K.; Jubum, K.: Shear strength of steel fiber-reinforced concrete beams without stirrups. ACI Struct. J. 99, 530–538 (2002)

    Google Scholar 

  30. Ibrahim, M.A.; Maen, F.; Mohsen, A.I.; Jessica, A.H.: Effect of material constituents on mechanical and fracture mechanics properties of ultra-high-performance concrete. ACI Mater. J. 114, 453–465 (2017). https://doi.org/10.14359/51689717

    Article  Google Scholar 

  31. Wang, R.; Xiaojian, G.: Relationship between flowability, entrapped air content and strength of UHPC mixtures containing different dosage of steel fiber. Appl. Sci. 6, 216 (2016). https://doi.org/10.3390/app6080216

    Article  Google Scholar 

  32. Zheng, Y.; Xiaolong, W.; Guangxian, H.; Qingfang, S.; Jianguo, X.; Yikai, S.: Mechanical properties of steel fiber-reinforced concrete by vibratory mixing technology. Adv. Civ. Eng. (2018). https://doi.org/10.1155/2018/9025715

    Article  Google Scholar 

  33. Köksal, F.; Altun, F.; Yiğit, İ; Şahin, Y.: Combined effect of silica fume and steel fiber on the mechanical properties of high strength concretes. Constr. Build. Mater. 22, 1874–1880 (2008). https://doi.org/10.1016/j.conbuildmat.2007.04.017

    Article  Google Scholar 

  34. Altun, F.; Haktanir, T.; Ari, K.: Effects of steel fiber addition on mechanical properties of concrete and RC beams. Constr. Build. Mater. 21, 654–661 (2007). https://doi.org/10.1016/j.conbuildmat.2005.12.006

    Article  Google Scholar 

  35. Adhikary, B.B.; Hiroshi, M.: Prediction of shear strength of steel fiber RC beams using neural networks. Constr. Build. Mater. 20, 801–811 (2006). https://doi.org/10.1016/j.conbuildmat.2005.01.047

    Article  Google Scholar 

  36. Shoaib, A.; Adam, S.L.; Vivek, S.B.: Size effect in shear for steel fiber-reinforced concrete members without stirrups. Struct. J. 111, 1081–1090 (2014). https://doi.org/10.14359/51686813

    Article  Google Scholar 

  37. Tokgoz, S.; Dundar, C.; Tanrikulu, A.K.: Experimental behaviour of steel fiber high strength reinforced concrete and composite columns. J. Constr. Steel Res. 74, 98–107 (2012). https://doi.org/10.1016/j.jcsr.2012.02.017

    Article  Google Scholar 

  38. Ashour, S.A.; Faisal, F.W.; Mohammad, I.K.: Effect of the concrete compressive strength and tensile reinforcement ratio on the flexural behavior of fibrous concrete beams. Eng. Struct. 22, 1145–1158 (2000). https://doi.org/10.1016/S0141-0296(99)00052-8

    Article  Google Scholar 

  39. Mo, K.M.; Chin, T.S.; Alengaram, U.J.; Jumaat, M.Z.: Material and structural properties of waste-oil palm shell concrete incorporating ground granulated blast-furnace slag reinforced with low-volume steel fibres. J. Clean. Prod. 133, 414–426 (2016). https://doi.org/10.1016/j.jclepro.2016.05.162

    Article  Google Scholar 

  40. Meda, A.; Fausto, M.; Giovanni, A.P.: Flexural behaviour of RC beams in fibre reinforced concrete. Compos. B 43(8), 2930–2937 (2012). https://doi.org/10.1016/j.compositesb.2012.06.003

    Article  Google Scholar 

  41. Biolzi, L.; Cattaneo, S.: Response of steel fiber reinforced high strength concrete beams: experiments and code predictions. Cem. Concr. Compos. 77, 1–13 (2017). https://doi.org/10.1016/j.cemconcomp.2016.12.002

    Article  Google Scholar 

  42. Behbahani, H.P.: Flexural behavior of steel fiber reinforced concrete beams. In: A project report of the degree of master of engineering, University Technology, Malaysia (2010)

  43. Ruano, G.; Isla, F.; Pedraza, R.I.; Sfer, D.; Luccioni, B.: Shear retrofitting of reinforced concrete beams with steel fiber reinforced concrete. Constr. Build. Mater. 54, 646–658 (2014). https://doi.org/10.1016/j.conbuildmat.2013.12.092

    Article  Google Scholar 

  44. EN 12390-3. Testing hardened concrete—part 3: compressive strength of test specimens. Turkish Standard Institution, Ankara, Turkey (2010) (in Turkish)

  45. EN 12390-13. Testing hardened concrete—part 13: determination of secant modulus of elasticity in compression. Turkish Standard Institution, Ankara, Turkey (2014) (in Turkish)

  46. ASTM C 1018. Standard test methods for flexural toughness and first crack strength of fiber reinforced concrete (using beam with third point loading). American Society of Testing Materials, USA (1997)

  47. Mugume, R.B.; Takashi, H.: Effect of fibre type and geometry on maximum pore pressures in fibre-reinforced high strength concrete at elevated temperatures. Cem. Concr. Res. 42(2), 459–466 (2012). https://doi.org/10.1016/j.cemconres.2011.11.014

    Article  Google Scholar 

  48. Marar, K.; Eren, Ö.; Yitmen, İ: Compression specific toughness of normal strength steel fiber reinforced concrete (NSSFRC) and high strength steel fiber reinforced concrete (HSSFRC). Mater. Res. 14(2), 239–247 (2011). https://doi.org/10.1590/S1516-14392011005000042

    Article  Google Scholar 

  49. Lee, S.C.; Oh, J.H.; Cho, J.Y.: Compressive behavior of fiber-reinforced concrete with end-hooked steel fibers. Materials (Basel) 8(4), 1442–1458 (2015). https://doi.org/10.3390/ma8041442

    Article  Google Scholar 

  50. Afroughsabet, V.; Biolzi, L.; Ozbakkaloglu, T.: Influence of double hooked-end steel fibers and slag on mechanical and durability properties of high performance recycled aggregate concrete. Compos. Struct. 181, 273–284 (2017). https://doi.org/10.1016/j.compstruct.2017.08.086

    Article  Google Scholar 

  51. Sukontasukkul, P.: Toughness evaluation of steel and polypropylene fibre reinforced concrete beams under bending. Thammasat Int. J. Sci. Technol. 9, 35–41 (2004)

    Google Scholar 

  52. Choi, S.; Thienel, K.C.; Shah, S.P.: Strain softening of concrete in compression under different end constraints. Mag. Concr. Res. 48(175), 103–115 (1996). https://doi.org/10.1680/macr.1996.48.175.103

    Article  Google Scholar 

  53. Brandt, A.M.: Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct. 86(1–3), 3–9 (2008). https://doi.org/10.1016/j.compstruct.2008.03.006

    Article  Google Scholar 

  54. Ezeldin, A.S.; Balaguru, P.N.: Normal and high strength fiber reinforced concrete under compression. Mater. Civ. Eng. 4, 415–429 (1992)

    Article  Google Scholar 

  55. Ramakrishnan, V.; Wu, G.Y.; Hosalli, G.: Flexural behavior and toughness of fiber reinforced concretes. Transp. Res. Rec. 1226, 69–77 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuat Köksal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köksal, F., Rao, K.S., Babayev, Z. et al. Effect of Steel Fibres on Flexural Toughness of Concrete and RC Beams. Arab J Sci Eng 47, 4375–4384 (2022). https://doi.org/10.1007/s13369-021-06113-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06113-5

Keywords

Navigation