Skip to main content

Advertisement

Log in

On the Impact of Soil Density on Soil Reaction and Structural Responses

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Seismic response of the pile-supported structure is strongly affected by soil–pile interaction (SPI) because the depth, properties and density of the layered soil differ for every place. In this research, a general cyclic Beam on Nonlinear Winkler Foundation (BNWF) model was developed to account for the SPI problem's essential features, including lateral load characteristics, multilayer sandy soil density and stiffness hardening/degradation. A series of tests were conducted to develop the p-y curves (called Kh-py) considering the local sand's relative densities. Strains were measured along with the single pile model under the lateral loads. The Kh-py curve was obtained based on a hyperbolic relationship for loose and dense sandy conditions. The BNWF model was subjected to seismic motions considering the site response analysis (SRA) and the soil–pile interaction (SPI) using the Kh-py and API-py curves. The model evaluation was performed on the Jahad bridge pier located in Semnan city in Iran. The seismic motion parameters were obtained based on genetic algorithms for the attenuation relationship. The dynamic analysis results in both of the py curves indicated that the maximum response values occurred almost simultaneously. The Kh-py curve considers the sand densities effect in the failure mechanism, which is shown to yield better predictions for the SPI than the API-py curves. The API-py model's obtained maximum values were decreased by 100–300% in the Kh-py model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig.6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig.14

Similar content being viewed by others

References

  1. Shamsi, M.; Ghanbari, A.: Nonlinear dynamic analysis of Qom monorail bridge considering soil-pile-bridge-train interaction. Trans. Geotech. (2020). https://doi.org/10.1016/j.trgeo.2019.100309

    Article  Google Scholar 

  2. Khari, M.; Kassim, K.A.; Adnan, A.: The effects of soil model on site response analyses. Electron. J. Geotech. Eng. 17, 2475–2484 (2012). https://doi.org/10.3923/ajsr.2014.76.84

    Article  Google Scholar 

  3. Elkasabgy, M.; Naggar El, M. H.: Lateral performance and p-y curves for large-capacity helical piles installed in clayey glacial deposit, In: Paper, T. (ed.) (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002063

  4. Aidin, T.; Ghannad, M.A.: The effect of soil modeling on the nonlinear response of SDOF structures. In: Structures Congress 2020. ASCE, St. Louis, Missouri (2020). https://doi.org/10.1061/9780784482896.040

  5. Soneji, B.B.; Jangid, R.S.: Influence of soil–structure interaction on the response of seismically isolated cable-stayed bridg. Soil Dyn. Earthq. Eng. 28, 245–257 (2008). https://doi.org/10.1016/j.soildyn.2007.06.005

    Article  Google Scholar 

  6. Chen, W.B.; Zhou, W.H.; dos Santos, J.A.: Analysis of consistent soil–structure interface response in multi–directional shear tests by discrete element modeling. Transp. Geotech. (2020). https://doi.org/10.1016/j.trgeo.2020.100379

    Article  Google Scholar 

  7. Raheem, S.E.A.; Aal, E.M.A.; AbdelShafy, A.G.; Fahmy, M.F.; Mansour, M.H.: Pile-soil-structure interaction effect on structural response of piled jacket-supported offshore platform through in-place analysis. Earthq. Struct. (2020). https://doi.org/10.12989/eas.2020.18.4.407

    Article  Google Scholar 

  8. Chen, J.J.; Wang, J.H.; Fan, W.; Wang, K.M.: In-situ test and numerical analysis of pile-soil interaction behavior of short-pile foundation. Yantu Lixue/Rock and Soil Mechanics, 30, 478–486 (2009). https://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200902042.htm

  9. El Naggar, M.H.; Bentley, K.J.: Dynamic analysis for laterally loaded piles and dynamic p-y curves. Can. Geotech. J. 37, 1166–1183 (2000). https://doi.org/10.1139/t00-058

    Article  Google Scholar 

  10. Keshtkarbanaeemoghadam, A.; Dehghanbanadaki, A.; Kaboli, M.H.: Estimation and optimization of heating energy demand of a mountain shelter by soft computing techniques. Sustain. Cities Soc. 41, 728–748 (2018). https://doi.org/10.1016/j.scs.2018.06.008

    Article  Google Scholar 

  11. Luamba, E.S.; de Paiva, J.B.: A 3D BEM/FEM formulation for the static analysis of piled rafts and capped pile groups subjected to vertical and horizontal loads. Eng. Anal. Bound. Elem. 130, 66–79 (2019). https://doi.org/10.1016/j.enganabound.2019.02.009

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Z.J.; Li, Q.; Horazdovsky, J.; Hulsey, J.L.; Marx, E.E.: Performance and design of laterally loaded piles in frozen ground. J. Geotech. Geoenviron. Eng. (2017). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001642

    Article  Google Scholar 

  13. Al-abboodi, I.; Sabbagh, T.T.; Al-salih, O.: Response of passively loaded pile roups-an experimental study. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.20.4.333

    Article  Google Scholar 

  14. Wang, H.D.; Shang, S.P.; Zhou, Z.J.; Zhou, F.Y.: Computational research on the horizontal dynamic response of single-pile considering pile-soil interaction during passage of rayleigh waves, Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 36, 1–5 (2009). https://www.researchgate.net/publication/289047484

  15. Moayedi, H.; Armaghani, D.J.: Optimizing an ANN model with ICA for estimating bearing capacity of driven pile in cohesionless soil. Eng. Comput. 34, 347–356 (2018). https://doi.org/10.1007/s00366-017-0545-7

    Article  Google Scholar 

  16. Tahghighi, H.; Konagai, K.: Numerical analysis of nonlinear soil-pile group interaction under lateral loads. Soil Dyn. Earthq. Eng. 27, 463–474 (2007). https://doi.org/10.1016/j.soildyn.2006.09.005

    Article  Google Scholar 

  17. Wang Tao, Z.G.; Wang, J.; Wang, D.: Impact of spatial variability of geotechnical properties on uncertain settlement of frozen soil foundation around an oil pipeline. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.20.1.019

    Article  Google Scholar 

  18. Abghari, A.; Chai, J.: Modeling of soil-pile -superstructure interaction for bridge foundations, In: LOADING, P. O. D. F. U. S. (ed.) Geotech. Spec. (1995)

  19. Carstensen, A.; Pucker, T.; Grabec, J.: Numerical model to predict the displacement of piles under cyclic lateral loading using a new hypoplastic spring element. Comput. Geotech. 101, 217–223 (2018). https://doi.org/10.1016/j.compgeo.2018.05.001

    Article  Google Scholar 

  20. Andrew, R.K.; Matos, C.G.: A soil-structure interaction procedure for the design of bridges on drilled shafts. In: Structures Congress 2018. ASCE, Fort Worth, Texas (2018). https://doi.org/10.1061/9780784481332.004

  21. Cao, G.; Zhu, M.X.; Gong, W.M.; Wang, X.; Dai, G.L.: Dynamic response of vertically loaded rectangular barrettes in multilayered viscoelastic soil. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.23.3.275

    Article  Google Scholar 

  22. Kampitsis, A.E.; Sapountzakis, E.J.; Giannakos, S.K.; Gerolymos, N.A.: Seismic soil–pile–structure kinematic and inertial interaction—a new beam approach. Soil Dyn. Earthq. Eng. (2013). https://doi.org/10.1016/j.soildyn.2013.09.023

    Article  Google Scholar 

  23. Fayun, L.; Chen, H.; Jia, Y.: Quasi-static py hysteresis loop for cyclic lateral response of pile foundations in offshore platforms. Ocean Eng. 148, 62–74 (2018). https://doi.org/10.1016/j.oceaneng.2017.11.024

    Article  Google Scholar 

  24. Zhang, Y.; Chen, X.; Zhang, X.; Ding, M.; Wang, Y.; Liu, Z.: Nonlinear response of the pile group foundation for lateral loads using pushover analysis. Earthq. Struct. (2020). https://doi.org/10.12989/eas.2020.19.4.273

    Article  Google Scholar 

  25. Stacul, S.; Squeglia, N.; Russo, G.: PRaFULL: a method for the analysis of piled raft foundation under lateral load. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.20.5.433

    Article  Google Scholar 

  26. Allotey, N.; El Naggar, M.H.: A numerical study into lateral cyclic nonlinear soil-pile response. Can. Geotech. J. 45, 1268–1281 (2008). https://doi.org/10.1139/T08-050

    Article  Google Scholar 

  27. Amin, R.; Mahdi, T.; Finn, W.L.; Ventura, C.E.: Evaluation of py curves used in practice for seismic analysis of soil-pile interaction, In: GeoCongress 2012. ASCE, Oakland, California, United States (2012). https://doi.org/10.1061/9780784412121.183

  28. Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A.: Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenviron. Eng. 125, 750–759 (1999). https://doi.org/10.1016/j.trgeo.2020.100399

    Article  Google Scholar 

  29. Castelli, F.; Maugeri, M.: Simplified approach for the seismic response of a pile foundation. J. Geotech. Geoenviron. Eng. 135, 1440–1451 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000107

    Article  Google Scholar 

  30. Zhang, Y.; Liao, C.; Chen, J.; Tong, D.; Wang, J.: Numerical analysis of interaction between seabed and mono-pile subjected to dynamic wave loadings considering the pile rocking effect. Ocean Eng. (2018). https://doi.org/10.1016/j.oceaneng.2018.02.041

    Article  Google Scholar 

  31. Deendayal, R.; Muthukkumaran, K.; Sitharam, T.G.: Effect of slope on p-y curves for laterally loaded piles in soft clay. Geotech. Geol. Eng. 36, 1509–1524 (2018). https://doi.org/10.1007/s10706-017-0405-7

    Article  Google Scholar 

  32. Mallick, M.; Raychowdhury, P.: Seismic analysis of highway skew bridges with nonlinear soil–pile interaction. Trans. Geotech. 3, 36–47 (2015). https://doi.org/10.1016/j.trgeo.2015.03.002

    Article  Google Scholar 

  33. Kim, Y.; Lim, H.; Jeong, S.: Seismic response of vertical shafts in multi-layered soil using dynamic and pseudo-static analyses. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.21.3.267

    Article  Google Scholar 

  34. Allotey, N.: Response of Single Pile in Sand to Seismic Excitation Using a Coupled P-y and T-z Approach, p. 857–869. Geotechnical Special Publication, Austin (2005) https://doi.org/10.1061/40778(157)21

    Book  Google Scholar 

  35. Naggar El, M. H.; Heideri, M.: Geo-structural nonlinear analysis of piles for performance based design, In: Proceedings of the 3rd World Congress on Civil, Structural, and Environmental Engineering (CSEE'18). Budapest, Hungary (2018). https://www.researchgate.net/publication/325722048

  36. Murono, Y.; Nishioka, H.; NogamI, T.: Seismic p-y model of pile foundation taking into acount soil-nonlinearity. Railw. Tech. Res. Inst. (2011). https://doi.org/10.2219/rtriqr.52.45

    Article  Google Scholar 

  37. Mylonakis, G.: Simplified model for seismic pile bending at soil layer interfaces. Soils Found. 41, 47–58 (2001). https://doi.org/10.3208/sandf.41.4_47

    Article  Google Scholar 

  38. Dehghanbanadaki, A.; Khari, M.; Arefnia, A.; Ahmad, K.; Motamedi, S.: A study on UCS of stabilized peat with natural filler: a computational estimation approach. KSCE J. Civ. Eng. 23(4), 1560–1572 (2019). https://doi.org/10.1007/s12205-019-0343-4

    Article  Google Scholar 

  39. Nagao, T.; Lu, P.: A simplified reliability estimation method for pile-supported wharf on the residual displacement by earthquake. Soil Dyn. Earthq. Eng. (2020). https://doi.org/10.1016/j.soildyn.2019.105904

    Article  Google Scholar 

  40. Dunnavant, T.W.; O’Neill, M.W.: Performance analysis and interpretation of a lateral load test of a 72-inch-diameter bored pile in overconsolidated clay (1985)

  41. Chen, X.; Zhang, X.; Zhang, Y.; Ding, M.; Wang, Y.: Hysteretic behaviors of pile foundation for railway bridges in loess. Geomech. Eng. (2020). https://doi.org/10.12989/gae.2020.20.4.323

    Article  Google Scholar 

  42. Dash, S.R.; Bhattacharya, S.; Huded, P: Scaling Factor for Generating P-Y Curves for Liquefied Soil from Its Stress-Strain Behavior, GeoMEast 2018. Springer. https://doi.org/10.1007/978-3-030-01926-6_12

  43. Bian, X.; Liang, Y.; Zhao, C.; Dong, L.; Cai, D.: Centrifuge testing and numerical modeling of single pile and long-pile groups adjacent to surcharge loads in silt soil. Trans. Geotech. (2020). https://doi.org/10.1016/j.trgeo.2020.100399

    Article  Google Scholar 

  44. Rovithis, E.; Kirtas, E.; Pitilakis, K.: Experimental p-y loops for estimating seismic soil-pile interaction. Bull. Earthq. Eng. 7, 719–736 (2009). https://doi.org/10.1007/s10518-009-9116-7

    Article  Google Scholar 

  45. Qin, X.; Ni, P.; Du, Y.J.: Buried rigid pipe-soil interaction in dense and medium sand backfills under downward relative movement: 2D finite element analysis. Transp. Geotech. 21, 100286 (2019). https://doi.org/10.1016/j.trgeo.2019.100286

    Article  Google Scholar 

  46. Anastasopoulos, I.; Gazetas, G.; Bransby, M.F.; Davies, M.C.; El Nahas, A.: Normal fault rupture interaction with strip foundations. J. Geotech. Geoenviron. Eng. 135, 359–370 (2009). https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(359)

    Article  Google Scholar 

  47. Khari, M.; Khairul, A.K.; Azlan, A.: Dynamic soil-pile interaction under earthquake events. Casp. J. Appl. Sci. Res. 2, 292–299 (2013). https://doi.org/10.3923/ajes.2014.1.9

    Article  Google Scholar 

  48. Hutchinson, T.C.; Chai, Y.H.; Boulanger, R.W.; Idriss, I.M.: Inelastic seismic response of extended pile-shaft-supported bridge structures. Earthq. Spectra 20, 1057–1080 (2004)

    Article  Google Scholar 

  49. Yang, E.; Choi, J.; Kwon, S.; Kim, M.: Development of dynamic p-y backbone curves for a single pile in dense sand by 1 g shaking table tests. Civ. Eng. 15, 813–821 (2011)

    Google Scholar 

  50. Wang, L.; Zhang, P.; Ding, H.; Tian, Y.; Qi, X.: The uplift capacity of single-plate helical pile in shallow densesand including the influence of installation. Mar. Struct. (2020). https://doi.org/10.1016/j.marstruc.2019.102697

    Article  Google Scholar 

  51. Khari, M.; Kassim, K.A.; Adnan, A.: The influence of effective confining pressure on site response analyses. Asian J. Earth Sci. 4, 148–156 (2011). https://doi.org/10.3923/ajes.2011.148.156

    Article  Google Scholar 

  52. Ashour, M.; Norris, G.: Modeling lateral soil-pile response based on soil-pile interaction. J. Geotech. Geoenviron. Eng. 126, 420–428 (2000). https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420)

    Article  Google Scholar 

  53. Liang, R.; Yang, K.; Nusairat, J.: p-y criterion for rock mass. J. Geotech. Geoenviron. Eng. 135, 26–36 (2009). https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(26)

    Article  Google Scholar 

  54. Lu, W.; Kaynia, A.M.; Zhang, G.: Centrifuge study of p-y curves for vertical–horizontal static loading of piles in sand. Int. J. Phys. Model. Geotech. (2020). https://doi.org/10.1680/jphmg.19.00030

    Article  Google Scholar 

  55. Naggar El, M.H.; Shayanfar, M.A.; Kimiaei, M.; Aghakouchak, A.A.: Simplified BNWF model for nonlinear seismic response analysis of offshore piles with nonlinear input ground motion analysis. Canadian Geotechnical Journal, 42, 365–380 (2005). http://ijce.iust.ac.ir/article-1-17-en.html

  56. Dehghanbanadaki, A.; Khari, M.; Amiri, S.T.; Armaghani, D.J.: Estimation of ultimate bearing capacity of driven piles in c-φ soil using MLP-GWO and ANFIS-GWO models: a comparative study. Soft Comput. 25(5), 4103–4119 (2021). https://doi.org/10.1007/s00500-020-05435-0

    Article  Google Scholar 

  57. Fleming, K.; Austin, W.; Mark, R.; Keith, E.: Piling Engineering. Surrey university press, London (1992). https://www.amazon.com/Piling-Engineering-W-G-Fleming/dp/0470218258

  58. Matlock, H.: Correlations for design of laterally loaded piles in soft clay, In: Proceedings of the 2nd offshore technology conference. OTC 1024, Houston (1970). https://doi.org/10.4043/1204-MS

  59. O’Neill, M.; Murchison, J.: An evaluation of P-Y relationships in sands, University of Houston (1983). http://www.worldcat.org/oclc/9858672

  60. Reese, L.; Cox, W.; Koop, F.: Field testing and analysis of laterally loaded piles in stiff clay, In: Proceedings of the 7th offshore technology conference, 1975 OTC 2312, Houston, pp.671–690 (1975). https://doi.org/10.4043/2312-MS

  61. Reese, L.; Cox, W.; Koop, F.: Analysis of laterally loaded piles in sand. In: Proceedings of the 6th offshore technology Conference, 1974 OTC 2080, Houston (1974). https://doi.org/10.4043/2080-MS

  62. Kim, B.T.; Kim, N.K.; Lee, W.J.; Kim, Y.S.: Experimental load-transfer curves of laterally loaded piles in Nak-Dong River sand. J. Geotech. Geoenviron. Eng. 130, 416–425 (2004). https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(416)

    Article  Google Scholar 

  63. Mostafa, Y.E.; El Naggar, M.H.: Dynamic analysis of laterally loaded pile groups in sand and clay. Can. Geotech. J. 39, 1358–1383 (2002). https://doi.org/10.1139/t02-102

    Article  Google Scholar 

  64. Sun, L.; Zhang, C.: Improvement of pushover analysis taking account of pier-pile-soil interaction, In: 13th World Conference on Earthquake Engineering. Vancouver, B.C., Canada (2004). https://www.researchgate.net/publication/252637193

  65. Hajihassani, M.; Armaghani, D.J.; Sohaei, H.; Mohamad, E.T.; Marto, A.: Prediction of airblast-overpressure induced by blasting using a hybrid artificial neural network and particle swarm optimization. Appl. Acoust. 80, 57–67 (2014). https://doi.org/10.1016/j.apacoust.2014.01.005

    Article  Google Scholar 

  66. Nazir, R.; Moayedi, H.; Noor, R.B.M.; Ghareh, S.: Development of new attenuation equation for subduction mechanisms in Malaysia water. Arab. J. Geosci. (2016). https://doi.org/10.1007/s12517-016-2773-3

    Article  Google Scholar 

  67. Bagheria, A.; Ghodrati Amirib, G.; Khorasanib, M.; Haghdoust, J.: Determination of attenuation relationships using an optimization problem, International Journal of Optimization in Civil Engineering, 4, 597–607 (2011). http://ijoce.iust.ac.ir/article-1-65-en.html

  68. Khari, M.; Dehghanbanadaki, A.; Armaghani, D.J.: Prediction of lateral deflection of smallscale piles using hybrid PSO–ANN model. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-04134-9

    Article  Google Scholar 

  69. Schnabel, P.B.; Lysmer, J.; Seed, H.B.: SHAKE: a computer program for earthquake response analysis of horizontally layered sites, Report EERC 72–12, Earthquake Engineering Research Center (1972)

  70. Zhang, J.; Makris, N.: (2002) Seismic response analysis of highway overcrossing including soil-structure interaction, Earthquake Engineering and Structural Dynamics, 31, 1967–1991. https://www.researchgate.net/publication/290169062

  71. American Petroleum Institute: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms, Working Stress Design. API RP 2A-WSD, 21st Edn. Errata and Supplement (2010). https://www.api.org/~/media/files/publications/whats%20new/2a-wsd_e22%20pa.pdf

  72. Mostafa, Y.E.; El Naggar, M.H.: Response of fixed offshore platforms to wave and current loading including soil-structure interaction. Soil Dyn. Earthq. Eng. 24, 357–368 (2004). https://doi.org/10.1016/j.soildyn.2003.11.008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdy Khari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khari, M. On the Impact of Soil Density on Soil Reaction and Structural Responses. Arab J Sci Eng 47, 4361–4374 (2022). https://doi.org/10.1007/s13369-021-06036-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06036-1

Keywords

Navigation