Skip to main content
Log in

RETRACTED ARTICLE: Studies of structural, electrical and multiferroic features of Fe-site co-substituted (Ni, Ti) bismuth ferrite: Bi(Ni0.35Ti0.35Fe0.30)O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

This article was retracted on 26 April 2022

This article has been updated

Abstract

The present studies have mainly been focused on the development (synthesis and characterization) of eco-friendly co-substituted (Ni, Ti) bismuth ferrite (referred as BFO) multiferroic of a composition Bi(Ni0.35Ti0.35Fe0.30)O3. The structural and morphological features of the ceramic technology prepared material were first examined by powder X-ray diffraction and field-emission scanning electron microscopy (FE-SEM) techniques. It is found that the Fe-site co-substitution has created deformation in structure of BFO from rhombohedral to orthorhombic symmetry. Their crystallite size was estimated by the Scherrer’s technique and found to be in the range of 20–49 nm. Detailed analysis of the FE-SEM micrograph and EDX (energy-dispersive X-rays) spectrum has shown the (i) uniform distribution of grains of varying size and (ii) elemental content and composition of the Bi(Ni0.35Ti0.35Fe0.30)O3 compound. Studies of the dielectric-impedance spectroscopy and transport parameters, obtained in a broad range of temperatures (298–773 K) and frequency (1 kHz–1 MHz), have provided many important data and mechanism, such as dielectric dispersion at high temperature, conduction mechanism, transport properties, non-Debye type of relaxation processes and negative temperature coefficient behavior of resistance (NTCR) of the studied material. The polarization vs. electric field (hysteresis loop) analysis exhibits that the magnitude of polarization increases with the increase of applied electric field. The magnetic measurement shows the change in ferromagnetic properties which may be due to the observed high remanent magnetization and coercive field. Thus, prepared material with modified multiferroic features may lead to numerous applications in the field of transducers, sensors and electronic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

References

  1. M. Fiebig, T. Lottermoser, D. Fröhlich, A.V. Goltse, R.V. Pisarev, Observation of coupled magnetic and electric domains. Nature 419(6909), 818–820 (2002)

    Article  ADS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  ADS  Google Scholar 

  3. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45, 822–831 (2019)

    Article  Google Scholar 

  4. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 889, 212907 (2006)

    ADS  Google Scholar 

  5. M. Bibes, A. Barthélémy, Multiferroics: towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008)

    Article  ADS  Google Scholar 

  6. N. Van Minh, N. Gia Quan, Structural, optical and electromagnetic properties of Bi1−xHoxFeO3 multiferroic materials. J. Alloys Comp. 509, 2663–2666 (2011)

    Article  Google Scholar 

  7. A. Nitin Kumar, N. Shukla, R.N.P. Kumar, A.K. Choudhary, Structural, Electrical and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 Solid Solution. RSC Adv. 8, 36939–36950 (2018)

    Article  ADS  Google Scholar 

  8. S.K. Pradhan, B.K. Roul, Electrical behaviour of high resistivity Ce-doped BiFeO3 multiferroic. Phys. B 407, 2527–2532 (2012)

    Article  ADS  Google Scholar 

  9. A. Kumar, N.M. Murari, R.S. Katiyar, Probing the ferroelectric phase transition in sol–gel-derived polycrystalline bismuth ferrite thin films. J. Raman Spectrosc. 39, 1262–1267 (2008)

    Article  ADS  Google Scholar 

  10. S. Pattanayak, R.N.P. Choudhary, P.R. Das, S.R. Shannigrahi, Dysub-stitution on structural, electrical and magnetic properties of multiferroic BiFeO3 ceramics. Ceram. Int. 40, 7983–7991 (2014)

    Article  Google Scholar 

  11. V.S. Puli, A. Kumar, N. Panwar, I.C. Panwar, R.S. Katiyar, Transition metal modified BiFeO3 with improved magnetization and linear magneto-electric coupling. J. Alloy. Compd. 509, 8223–8227 (2011)

    Article  Google Scholar 

  12. W. Mao, X. Li, Y. LI, X. Wang, Y. Wang, Y. Ma, X. Feng, T. Yang, J. Yang, Structural phase transition and multiferroic properties of single-phase Bi1-xErxFe0.95Co0.05O3. Mater. Lett. 97, 56–58 (2013)

    Article  Google Scholar 

  13. H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, H. Yan, J. Alloy. Compd. 582, 273–276 (2014)

    Article  Google Scholar 

  14. P. Mehdizadeh, Y. Orooji, O. Amiri, M.S. Niasari, H. Moayedi, Green synthesis using cherry and orange juice and characterization of TbFeO3 ceramic nanostructures and their application as photocatalysts under UV light for removal of organic dyes in water. J Clean Prod 252, 119765 (2020)

    Article  Google Scholar 

  15. P. Mehdizadeh, M. Masjedi-Arani, M.S. Niasari, Green solid-state fabrication of new nanocomposites based on La–Fe–O nanostructures for electrochemical hydrogen storage application. Int. J. Hydrogen Energy 46, 17253–17266 (2021)

    Article  Google Scholar 

  16. P. Mehdizadeh, O. Amiri, S. Rashki, M.S. Niasari, M. Salimian, L.K. Foong, Effective removal of organic pollution by using sonochemical prepared LaFeO3 perovskite under visible light. Ultrason. Sonochem. 61, 104848 (2020)

    Article  Google Scholar 

  17. M.S. Niasari, F. Davar, Z. Fereshteh, Synthesis of nickel and nickel oxide nanoparticles via heat-treatment of simple octanoate precursor. J. Alloys Compd. 494, 410–414 (2010)

    Article  Google Scholar 

  18. F. Beshkar, H. Khojasteh, M.S. Niasari, Recyclable magnetic superhydrophobic straw soot sponge for highly efficient oil/water separation. J. Colloid Interface Sci. 497, 57–65 (2017)

    Article  ADS  Google Scholar 

  19. S.Z. Ajabshir, M.S. Niasari, Z.Z. Ajabshir, Nd2Zr2O7-Nd2O3 nanocomposites: new facile synthesis, characterization and investigation of photocatalytic behaviour. Mater. Lett. 180, 27–30 (2016)

    Article  Google Scholar 

  20. M.M. Arani, M.S. Niasari, Novel synthesis of Zn2GeO4/graphene nanocomposite for enhanced electrochemical hydrogen storage performance. Int. J. Hydrogen Energy 42, 17184–17191 (2017)

    Article  Google Scholar 

  21. A. Salehabadi, M.S. Niasari, M.G. Arani, Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J. Alloys Compd. 745, 789–797 (2018)

    Article  Google Scholar 

  22. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3-BiFeO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)

    Article  Google Scholar 

  23. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Design and development of bismuth ferrite based environmental friendly multiferroic for devices. Mater. Today: Proc. 18, 638–646 (2019)

    Google Scholar 

  24. N. Kumar, A. Shukla, R.N.P. Choudhary, Development of lead free multifunctional materials Bi(Co0.45Ti0.45Fe0.10)O3. Prog. Nat. Sci.: Mater. Int. 28, 308–314 (2018)

    Article  Google Scholar 

  25. N. Kumar, R.N.P. Alok Shukla, Choudhary, , Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. 27, 6673–6684 (2017)

    Google Scholar 

  26. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic properties of (Cd, Ti) modified BiFeO3. Phys. Lett. A 381, 2721–2730 (2017)

    Article  ADS  Google Scholar 

  27. N. Kumar, A. Shukla, B. Behera, R.N.P. Choudhary, Structural, electrical and magnetic properties of Bi(Ni0.45Ti0.45Fe0.1)O3. J. Alloys Compd. 688, 858 (2016)

    Article  Google Scholar 

  28. J.M. Moreau, C. Michel, R. Gerson, W.J. James, J. Phys. Chem. Solids 32, 1315 (1971)

    Article  ADS  Google Scholar 

  29. R. Palai, R.S. Katiyar, H. Schmid, P. Tissot, S.J. Clark, J. Robertson, S.A.T. Redfern, G. Catalan, J.F. Scott, β phase and γ − β metal-insulator transition in multiferroic BiFeO3. Phys. Rev. B 77, 014110 (2008)

    Article  ADS  Google Scholar 

  30. N. Kumar, A. Shukla, N. Kumar, R. Agarwal, R.N.P. Choudhary, Eco-friendly Bi(Ni2/5Ti2/5Fe1/5)O3 nanoceramics: synthesis dielectric and impedance studies. Ceram. Int. 47(15), 22147–22154 (2021)

    Article  Google Scholar 

  31. S. Pragya Pandit, P.K.G. Satapathy, Effect of La substitution on conductivity and dielectric properties of Bi1-xLaxFeO3 ceramics: an impedance spectroscopy analysis. Phys. B 406, 2669–2677 (2011)

    Article  ADS  Google Scholar 

  32. S. Sen, R.N.P. Choudhary, Impedance studies of Sr modified BaZr005Ti095O3 ceramics. Mater. Chem. Phys. 87(2), 256–263 (2004)

    Article  Google Scholar 

  33. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Effects of milling time on structural, electrical and ferroelectric features of mechanothermally synthesized multi-doped bismuth ferrite. Appl. Phys. A 126, 181 (2020)

    Article  ADS  Google Scholar 

  34. S. Brahma, R.N.P. Choudhary, A.K. Thakur, AC impedance analysis of LaLiMo2O8 electroceramics. Phys. B 355, 188–201 (2005)

    Article  ADS  Google Scholar 

  35. J. Plocharski, W. Wieczoreck, PEO based composite solid electrolyte containing nasicon. Solid State Ionics 28, 979–982 (1988)

    Article  Google Scholar 

  36. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Stat. Sol. 201, 588–595 (2004)

    Article  ADS  Google Scholar 

  37. N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, R.N.P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe09La01)O3. Ceram. Int. 44, 21330–21337 (2018)

    Article  Google Scholar 

  38. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analyzing the ac- behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)

    Article  Google Scholar 

  39. A.R. James, K. Srinivas, Low temperature fabrication and impedance spectroscopy of PMN-PT ceramics. Mater. Res. Bull. 34, 1301–1310 (1999)

    Article  Google Scholar 

  40. N. Hirose, A.R. West, Impedance spectroscopy of undoped BaToO3 ceramics. J. Ame. Ceram. Soc. 79, 1633 (1996)

    Article  Google Scholar 

  41. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the ac behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. 58, 429–432 (1975)

    Article  Google Scholar 

  42. P.C. Sati, M. Arora, S. Chauhan, M. Kumar, S. Chhoker, Structural, magnetic, vibrational and impedance properties of Pr and Ti codoped BiFeO3 multiferroic ceramics. Ceram. Int. 40(6), 7805–7816 (2014)

    Article  Google Scholar 

  43. J.S. Kim, Electric modulus spectroscopy of lithium tetraborate (Li2B4O7) single crystal. J. Phys. Soc. Jpn. 70, 3129–3133 (2001)

    Article  ADS  Google Scholar 

  44. J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Dielectric permittivity and electric modulus in Bi2Ti4O11. J. Chem. Phys. 119(5), 2812–2819 (2003)

    Article  ADS  Google Scholar 

  45. J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ion. 13, 147–149 (1984)

    Article  ADS  Google Scholar 

  46. G. Williams, D.C. Watts, Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  47. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  48. A.K. Jonscher, Universal Relaxation Law (Chelsea Dielectrics Press, 1996)

    Google Scholar 

  49. A. Mansingh, A. Dhar, The AC conductivity and dielectric constant of lithium niobate single crystals. J. Phys. D Appl. Phys. 18, 2059–2071 (1985)

    Article  ADS  Google Scholar 

  50. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci.: Mater. Electron. 23, 779 (2011)

    Google Scholar 

  51. C. Karthik, K.B.R. Varma, Dielectric and AC conductivity behaviour of BaBi2Nb2O9 ceramics. J. Phys. Chem. Solids 67(12), 2437–2441 (2006)

    Article  ADS  Google Scholar 

  52. E. Venkata Ramana, M.P.F. Graca, M.A. Valente, T. Bhima Sankaram, J. Alloys Compd. 583, 198–205 (2014)

    Article  Google Scholar 

  53. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Appl. Phys. 100, 084105 (2006)

    Article  ADS  Google Scholar 

  54. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)

    Article  ADS  Google Scholar 

  55. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998)

    Article  ADS  Google Scholar 

  56. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  Google Scholar 

  57. N. Van Minh, N. Gia Quan, Structural, optical and electromagnetic properties of Bi1-xHoxFeO3 multiferroic materials. J. Alloys Comp. 509, 2663–2666 (2011)

    Article  Google Scholar 

  58. P. Guzdek, The magnetostrictive and magnetoelectric characterization of Ni0.3Zn0.62Cu0.08Fe2O4–Pb(FeNb)0.5O3 laminated composite. J. Magn. Magn. Mater. 349, 219–223 (2014)

    Article  ADS  Google Scholar 

  59. H.O. Rodrigues, G.F.M.P. Junior, J.S. Almeida, E.O. Sancho, A.C. Ferreira, M.A.S. Silva, A.S.B. Sombra, Study of the structural, dielectric and magnetic properties of Bi2O3 and PbO addition on BiFeO3 ceramic matrix. J. Phys. Chem. Solids. 71, 1329–1336 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial assistance provided by SERB-DST in the form of Research Project (No. EMR/2015/002420) to the author AS is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alok Shukla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s00339-022-05624-8

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Shukla, A. & Choudhary, R.N.P. RETRACTED ARTICLE: Studies of structural, electrical and multiferroic features of Fe-site co-substituted (Ni, Ti) bismuth ferrite: Bi(Ni0.35Ti0.35Fe0.30)O3. Appl. Phys. A 127, 710 (2021). https://doi.org/10.1007/s00339-021-04853-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04853-7

Keywords

Navigation