Skip to main content
Log in

In-situ cost-effective synthesis of zeolite A in Al2O3–SiO2 glass fibers for fixed bed adsorption of Cu2+, Cd2+ and Pb2+

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The in-situ coating of zeolite crystals on Al2O3–SiO2 glass fiber was investigated using two commercial fibers (FB1 and FB2). The fibers were submitted to hydrothermal treatment at different temperatures, resulting in the crystallization of zeolite on their surfaces. The materials obtained were characterized by X-ray fluorescence, X-ray diffraction, Fourier transform infrared spectroscopy and scanning electron microscopy. Batch and fixed bed essays were carried out to evaluate the performance of the materials in the adsorption Cu2+, Cd2+ and Pb2+ from aqueous solutions, at 28 ± 2 °C. The syntheses in which the FB1 sample was employed resulted in zeolite A as the only crystalline phase. The exception was the FB1-100 material which sodalite was also formed. When FB2 samples were used, only the FB2-85 material indicated resulted in zeolite A without secondary phases, while the other materials presented a mixture of phases. The materials FB1-95 and FB2-95 presented better performance in batch adsorption experiments than the other samples, with Qe for FB1-95 being 0.049 mmol g−1 for the three metal ions, and Qe for FB2-95 being 0.043, 0.047, and 0.049 mmoL g−1 for Cu2+, Cd2+ and Pb2+, respectively. Therefore, these samples were selected for the study of fixed bed adsorption. The following adsorption order was verified: Pb2+  > Cd2+  > Cu2+. Linear Driving Force (LDF) model proved to be suitable for the adsorption experimental data, confirming the high potential of the FB1-95 and FB2-95 materials for the adsorption of Cu2+, Cd2+ and Pb2+ in aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. Melo, D.D.Q., Vidal, C.B., Medeiros, T.C., Raulino, G.S.C., Dervanoski, A., Pinheiro, M.D.C., Nascimento, R.F.D.: Biosorption of metal ions using a low cost modified adsorbent (Mauritia flexuosa): experimental design and mathematical modeling. Environ. Technol. 37(17), 2157–2171 (2016). https://doi.org/10.1080/09593330.2016.1144796

    Article  CAS  Google Scholar 

  2. Paramitha, T., Wulandari, W., Rizkiana, J., Sasongko, D.: Performance evaluation of coal fly ash based zeolite A for heavy metal ions adsorption of wastewater. IOP Conf. Ser. Mater. Sci. Eng. 1, 012095 (2019)

    Article  Google Scholar 

  3. Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., Li, R.: Heavy metal adsorption with zeolites: the role of hierarchical pore architecture. Chem. Eng. J. 359, 363–372 (2019). https://doi.org/10.1016/j.cej.2018.11.087

    Article  CAS  Google Scholar 

  4. Al Dwairi, R., Omar, W., Al-Harahsheh, S.: Desalination: kinetic modelling for heavy metal adsorption using Jordanian low cost natural zeolite (fixed bed column study). J. Water Reuse 5(2), 231–238 (2015). https://doi.org/10.2166/wrd.2014.063

    Article  CAS  Google Scholar 

  5. Chaabane, L., Beyou, E., El Ghali, A., Baouab, M.H.V.: Comparative studies on the adsorption of metal ions from aqueous solutions using various functionalized graphene oxide sheets as supported adsorbents. J. Hazard. Mater. 389, 121839 (2020). https://doi.org/10.1016/j.jhazmat.2019.121839

    Article  CAS  PubMed  Google Scholar 

  6. Xiang, B., Ling, D., Lou, H., Gu, H.: 3D hierarchical flower-like nickel ferrite/manganese dioxide toward lead (II) removal from aqueous water. J. Hazard. Mater. 325, 178–188 (2017). https://doi.org/10.1016/j.jhazmat.2016.11.011

    Article  CAS  PubMed  Google Scholar 

  7. Kołodyńska, D., Krukowska-Bąk, J., Kazmierczak-Razna, J., Pietrzak, R.: Uptake of heavy metal ions from aqueous solutions by sorbents obtained from the spent ion exchange resins. Microporous Mesoporous Mater. 244, 127–136 (2017). https://doi.org/10.1016/j.micromeso.2017.02.040

    Article  CAS  Google Scholar 

  8. Nejadshafiee, V., Islami, M.R.: Adsorption capacity of heavy metal ions using sultone-modified magnetic activated carbon as a bio-adsorbent. Mater. Sci. Eng. 101, 42–52 (2019)

    Article  CAS  Google Scholar 

  9. Otunola, B.O., Ololade, O.O.: Innovation: a review on the application of clay minerals as heavy metal adsorbents for remediation purposes. Environ. Technol. 18, 100692 (2020). https://doi.org/10.1016/j.eti.2020.100692

    Article  Google Scholar 

  10. Goncalves, M.B., Schmidt, D.V., Dos Santos, F.S., Cipriano, D.F., Gonçalves, G.R., Freitas, J.C., de Pietre, M.K.: Nanostructured faujasite zeolite as metal ion adsorbent: kinetics, equilibrium adsorption and metal recovery studies. Water Sci. Technol. 83(2), 358–371 (2021). https://doi.org/10.2166/wst.2020.580

    Article  CAS  PubMed  Google Scholar 

  11. Khanmohammadi, H., Bayati, B., Rahbar-Shahrouzi, J., Babaluo, A.-A., Ghorbani, A.: Molecular simulation of the ion exchange behavior of Cu2+, Cd2+ and Pb2+ ions on different zeolites exchanged with sodium. J. Environ. Chem. Eng. 7(3), 103040 (2019). https://doi.org/10.1016/j.jece.2019.103040

    Article  CAS  Google Scholar 

  12. Meng, Q., Chen, H., Lin, J., Lin, Z., Sun, J.: Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater. J. Environ. Sci. 56, 254–262 (2017). https://doi.org/10.1016/j.jes.2016.10.010

    Article  CAS  Google Scholar 

  13. Chen, L.-H., Sun, M.-H., Wang, Z., Yang, W., Xie, Z., Su, B.-L.: Hierarchically structured zeolites: from design to application. Chem. Rev. 120(20), 11194–11294 (2020). https://doi.org/10.1021/acs.chemrev.0c00016

    Article  CAS  PubMed  Google Scholar 

  14. Cundy, C.S., Cox, P.A.: The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem. Rev. 103(3), 663–702 (2003). https://doi.org/10.1021/cr020060i

    Article  CAS  PubMed  Google Scholar 

  15. Weckhuysen, B.M., Yu, J.: Recent advances in zeolite chemistry and catalysis. Chem. Soc. Rev. 44(20), 7022–7024 (2015). https://doi.org/10.1039/C5CS90100F

    Article  CAS  PubMed  Google Scholar 

  16. Gao, X., Gao, B., Liu, H., Zhang, C., Zhang, Y., Jiang, J., Gu, X.: Fabrication of stainless steel hollow fiber supported NaA zeolite membrane by self-assembly of submicron seeds. Sep. Purif. Technol. 234, 116121 (2020). https://doi.org/10.1016/j.seppur.2019.116121

    Article  CAS  Google Scholar 

  17. Yang, X., Liu, Y., Yan, C., Chen, G.: Solvent-free preparation of hierarchical 4A zeolite monoliths: role of experimental conditions. J. Cryst. Growth 528, 125286 (2019). https://doi.org/10.1016/j.jcrysgro.2019.125286

    Article  CAS  Google Scholar 

  18. Wei, Y., Parmentier, T.E., de Jong, K.P., Zečević, J.: Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44(20), 7234–7261 (2015). https://doi.org/10.1039/C5CS00155B

    Article  CAS  PubMed  Google Scholar 

  19. Vasiliev, P., Akhtar, F., Grins, J., Mouzon, J., Andersson, C., Hedlund, J., Bergström, L.: Strong hierarchically porous monoliths by pulsed current processing of zeolite powder assemblies. ACS Appl. Mater. Interfaces. 2(3), 732–737 (2010). https://doi.org/10.1021/am900760w

    Article  CAS  PubMed  Google Scholar 

  20. Chen, L.-H., Li, Y., Su, B.-L.: Hierarchy in materials for maximized efficiency. Natl. Sci. Rev. 7(11), 1626–1630 (2020). https://doi.org/10.1093/nsr/nwaa251

    Article  CAS  Google Scholar 

  21. Lopez-Orozco, S., Inayat, A., Schwab, A., Selvam, T., Schwieger, W.: Zeolitic materials with hierarchical porous structures. Adv. Mater. 23(22–23), 2602–2615 (2011). https://doi.org/10.1002/adma.201100462

    Article  CAS  PubMed  Google Scholar 

  22. Schwieger, W., Machoke, A.G., Weissenberger, T., Inayat, A., Selvam, T., Klumpp, M., Inayat, A.: Hierarchy concepts: classification and preparation strategies for zeolite containing materials with hierarchical porosity. Chem. Soc. Rev. 45(12), 3353–3376 (2016). https://doi.org/10.1039/C5CS00599J

    Article  CAS  PubMed  Google Scholar 

  23. Larlus, O., Valtchev, V., Patarin, J., Faust, A.-C., Maquin, B.: Preparation of silicalite-1/glass fiber composites by one-and two-step hydrothermal syntheses. Microporous Mesoporous Mater. 56(2), 175–184 (2002). https://doi.org/10.1016/S1387-1811(02)00483-3

    Article  CAS  Google Scholar 

  24. Yang, X.-Y., Chen, L.-H., Li, Y., Rooke, J.C., Sanchez, C., Su, B.-L.: Hierarchically porous materials: synthesis strategies and structure design. Chem. Soc. Rev. 46(2), 481–558 (2017). https://doi.org/10.1039/C6CS00829A

    Article  CAS  PubMed  Google Scholar 

  25. Wardani, A.R., Widiastuti, N.: Synthesis of zeolite-X supported on glasswool for CO2 capture material: variation of immersion time and NaOH concentration at glasswool activation. Indones. J. Chem. 16(1), 1–7 (2016). https://doi.org/10.22146/ijc.21169

    Article  CAS  Google Scholar 

  26. Okada, K., Kuboyama, K.-I., Takei, T., Kameshima, Y., Yasumori, A., Yoshimura, M.: In situ zeolite Na–X coating on glass fibers by soft solution process. Microporous Mesoporous Mater. 37(1–2), 99–105 (2000). https://doi.org/10.1016/S1387-1811(99)00198-5

    Article  CAS  Google Scholar 

  27. Yamazaki, S., Tsutsumi, K.: Synthesis of an A-type zeolite membrane on silicon oxide film-silicon, quartz plate and quartz fiber filter. Microporous Mater. 4(2–3), 205–212 (1995). https://doi.org/10.1016/0927-6513(95)00006-U

    Article  CAS  Google Scholar 

  28. Okada, K., Shinkawa, H., Takei, T., Hayashi, S., Yasumori, A.: In-situ coating of zeolite Na-A on Al2O3-SiO2 glass fibers. J. Porous Mater. 5(2), 163–168 (1998). https://doi.org/10.1023/A:1009661925215

    Article  CAS  Google Scholar 

  29. Langmuir, I.: The dissociation of hydrogen into atoms. J. Am. Chem. Soc. 34(7), 860–877 (1912). https://doi.org/10.1021/ja02208a003

    Article  CAS  Google Scholar 

  30. Cooney, D.O.: Adsorption Design for Wastewater Treatment. CRC Press, Boca Raton (1998)

    Google Scholar 

  31. Raulino, G.S.C., Vidal, C.B., Lima, A.C.A., Melo, D.Q., Oliveira, J.T., Nascimento, R.F.: Treatment influence on green coconut shells for removal of metal ions: pilot-scale fixed-bed column. Environ. Technol. 35(14), 1711–1720 (2014). https://doi.org/10.1080/09593330.2014.880747

    Article  CAS  Google Scholar 

  32. Sousa, F.W., Oliveira, A.G., Ribeiro, J.P., Rosa, M.F., Keukeleire, D., Nascimento, R.F.: Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. J. Environ. Manage. 91(8), 1634–1640 (2010). https://doi.org/10.1016/j.jenvman.2010.02.011

    Article  CAS  PubMed  Google Scholar 

  33. Ruthven, D.M.: Principles of Adsorption and Adsorption Processes. Wiley, New York (1984)

    Google Scholar 

  34. Dantas, T., Luna, F.T., Silva, I., Jr., Torres, A., De Azevedo, D., Rodrigues, A., Moreira, R.: Modeling of the fixed-bed adsorption of carbon dioxide and a carbon dioxide-nitrogen mixture on zeolite 13X. Braz. J. Chem. Eng. 28(3), 533–544 (2011). https://doi.org/10.1590/S0104-66322011000300018

    Article  CAS  Google Scholar 

  35. Veloso, C.B., Silva, Á.N., Watanabe, T.T., Paes, J.F.B., de Luna, F.M.T., Cavalcante, C.L.: Scale inhibitor adsorption studies in rock sandstone type. Adsorption 20(8), 977–985 (2014). https://doi.org/10.1007/s10450-014-9643-7

    Article  CAS  Google Scholar 

  36. Van Zee, G., Veenstra, R., De Graauw, J.: Axial dispersion in packed fiber beds. Chem. Eng. J. 58(3), 245–250 (1995). https://doi.org/10.1016/0923-0467(94)02894-X

    Article  Google Scholar 

  37. Luna, F.M.T., Araújo, C.C., Veloso, C.B., Silva, I.J., Azevedo, D.C., Cavalcante, C.L.: Adsorption of naphthalene and pyrene from isooctane solutions on commercial activated carbons. Adsorption 17(6), 937–947 (2011). https://doi.org/10.1007/s10450-011-9372-0

    Article  CAS  Google Scholar 

  38. Luna, F.M.T., Oliveira Filho, A.N., Araújo, C.C., Azevedo, D.C., Cavalcante, C.L., Jr.: Adsorption of polycyclic aromatic hydrocarbons from heavy naphthenic oil using commercial activated carbons. 2. Column adsorption studies. Ind. Eng. Chem. Res. 55(29), 8184–8190 (2016). https://doi.org/10.1021/acs.iecr.6b01492

    Article  CAS  Google Scholar 

  39. Majchrzak-Kucęba, I.: A simple thermogravimetric method for the evaluation of the degree of fly ash conversion into zeolite material. J. Porous Mater. 20(2), 407–415 (2013). https://doi.org/10.1007/s10934-012-9610-1

    Article  CAS  Google Scholar 

  40. Yoldi, M., Fuentes-Ordoñez, E., Korili, S., Gil, A.: Zeolite synthesis from industrial wastes. Microporous Mesoporous Mater. 287, 183–191 (2019). https://doi.org/10.1016/j.micromeso.2019.06.009

    Article  CAS  Google Scholar 

  41. Ameh, A.E., Fatoba, O.O., Musyoka, N.M., Petrik, L.F.: Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA. Powder Technol. 306, 17–25 (2017). https://doi.org/10.1016/j.powtec.2016.11.003

    Article  CAS  Google Scholar 

  42. Musyoka, N.M., Petrik, L.F., Gitari, W.M., Balfour, G., Hums, E.: Optimization of hydrothermal synthesis of pure phase zeolite Na-P1 from South African coal fly ashes. J. Environ. Sci. Health Part A 47(3), 337–350 (2012). https://doi.org/10.1080/10934529.2012.645779

    Article  CAS  Google Scholar 

  43. Iqbal, A., Sattar, H., Haider, R., Munir, S.: Synthesis and characterization of pure phase zeolite 4A from coal fly ash. J. Clean. Prod. 219, 258–267 (2019). https://doi.org/10.1016/j.jclepro.2019.02.066

    Article  CAS  Google Scholar 

  44. Kuwahara, Y., Ohmichi, T., Mori, K., Katayama, I., Yamashita, H.: Synthesis of zeolite from steel slag and its application as a support of nano-sized TiO2 photocatalyst. J. Mater. Sci. 43(7), 2407–2410 (2008). https://doi.org/10.1007/s10853-007-2073-0

    Article  CAS  Google Scholar 

  45. Lee, Y.-R., Soe, J.T., Zhang, S., Ahn, J.-W., Park, M.B., Ahn, W.-S.: Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: a mini review. Chem. Eng. J. 317, 821–843 (2017). https://doi.org/10.1016/j.cej.2017.02.124

    Article  CAS  Google Scholar 

  46. Kirdeciler, S.K., Akata, B.: One pot fusion route for the synthesis of zeolite 4A using kaolin. Adv. Powder Technol. 31(10), 4336–4343 (2020). https://doi.org/10.1016/j.apt.2020.09.012

    Article  CAS  Google Scholar 

  47. Breuer, R., Barsotti, L., Kelly, A.: Behavior of Silica in Sodium Aluminate Solutions, vol. 1. Interscience Publishers, New York (1963)

    Google Scholar 

  48. Liu, Q., Navrotsky, A.: Synthesis of nitrate sodalite: an in situ scanning calorimetric study. Geochim. Cosmochim. Acta 71(8), 2072–2078 (2007). https://doi.org/10.1016/j.gca.2007.01.011

    Article  CAS  Google Scholar 

  49. Wu, Z., Xie, J., Liu, H., Chen, T., Cheng, P., Wang, C., Kong, D.: Preparation, characterization, and performance of 4A zeolite based on opal waste rock for removal of ammonium ion. Adsorpt. Sci. Technol. 36(9–10), 1700–1715 (2018). https://doi.org/10.1177/0263617418803012

    Article  CAS  Google Scholar 

  50. Loiola, A., Andrade, J., Sasaki, J., Da Silva, L.: Structural analysis of zeolite NaA synthesized by a cost-effective hydrothermal method using kaolin and its use as water softener. J. Colloid Interface Sci. 367(1), 34–39 (2012). https://doi.org/10.1016/j.jcis.2010.11.026

    Article  CAS  PubMed  Google Scholar 

  51. Tabi, R.N., Agyemang, F.O., Mensah-Darkwa, K., Arthur, E.K., Gikunoo, E., Momade, F.: Zeolite synthesis and its application in water defluorination. Mater. Chem. Phys. 261, 124229 (2021). https://doi.org/10.1016/j.matchemphys.2021.124229

    Article  CAS  Google Scholar 

  52. Zavareh, S., Farrokhzad, Z., Darvishi, F.: Modification of zeolite 4A for use as an adsorbent for glyphosate and as an antibacterial agent for water. Ecotoxicol. Environ. Saf. 155, 1–8 (2018). https://doi.org/10.1016/j.ecoenv.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  53. Snyder, M.A., Tsapatsis, M.: Hierarchical nanomanufacturing: from shaped zeolite nanoparticles to high-performance separation membranes. Angew. Chem. Int. Ed. 46(40), 7560–7573 (2007). https://doi.org/10.1002/anie.200604910

    Article  CAS  Google Scholar 

  54. Bessa, R.A., França, A.M.M., Pereira, A.L.S., Alexandre, N.P., Pérez-Page, M., Holmes, S.M., Nascimento, R.F., Rosa, M.F., Anderson, M.W., Loiola, A.R.: Hierarchical zeolite based on multiporous zeolite A and bacterial cellulose: an efficient adsorbent of Pb 2+. Microporous Mesoporous Mater. 312, 110752 (2021). https://doi.org/10.1016/j.micromeso.2020.110752

    Article  CAS  Google Scholar 

  55. He, K., Chen, Y., Tang, Z., Hu, Y.: Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ. Sci. Pollut. Res. 23(3), 2778–2788 (2016). https://doi.org/10.1007/s11356-015-5422-6

    Article  CAS  Google Scholar 

  56. Mihaly-Cozmuta, L., Mihaly-Cozmuta, A., Peter, A., Nicula, C., Tutu, H., Silipas, D., Indrea, E.: Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies. J. Environ. Manage. 137, 69–80 (2014). https://doi.org/10.1016/j.jenvman.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  57. Ok, Y.S., Yang, J.E., Zhang, Y.-S., Kim, S.-J., Chung, D.-Y.: Heavy metal adsorption by a formulated zeolite-Portland cement mixture. J. Hazard. Mater. 147(1–2), 91–96 (2007). https://doi.org/10.1016/j.jhazmat.2006.12.046

    Article  CAS  PubMed  Google Scholar 

  58. Usman, A.R.A.: The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley. Egypt. Geoderma 144(1–2), 334–343 (2008). https://doi.org/10.1016/j.geoderma.2007.12.004

    Article  CAS  Google Scholar 

  59. Xie, W.-M., Zhou, F.-P., Bi, X.-L., Chen, D.-D., Li, J., Sun, S.-Y., Liu, J.-Y., Chen, X.-Q.: Accelerated crystallization of magnetic 4A-zeolite synthesized from red mud for application in removal of mixed heavy metal ions. J. Hazard. Mater. 358, 441–449 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.007

    Article  CAS  PubMed  Google Scholar 

  60. Marcus, Y.: A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 51(2–3), 111–127 (1994). https://doi.org/10.1016/0301-4622(94)00051-4

    Article  CAS  Google Scholar 

  61. Panayotova, M., Velikov, B.: Kinetics of heavy metal ions removal by use of natural zeolite. J. Environ. Sci. 37(2), 139–147 (2002). https://doi.org/10.1081/ESE-120002578

    Article  Google Scholar 

  62. Olegario, E., Pelicano, C.M., Felizco, J.C., Mendoza, H.: Thermal stability and heavy metal (As5+, Cu2+, Ni2+, Pb2+ and Zn2+) ions uptake of the natural zeolites from the Philippines. Mater. Res. Express 6(8), 085204 (2019). https://doi.org/10.1088/2053-1591/ab1a73

    Article  CAS  Google Scholar 

  63. Cabrera, C., Gabaldón, C., Marzal, P.: Sorption characteristics of heavy metal ions by a natural zeolite. J. Chem. Technol. Biotechnol. 80(4), 477–481 (2005). https://doi.org/10.1002/jctb.1189

    Article  CAS  Google Scholar 

  64. Qiu, W., Zheng, Y.: Removal of lead, copper, nickel, cobalt, and zinc from water by a cancrinite-type zeolite synthesized from fly ash. Chem. Eng. J. 145(3), 483–488 (2009). https://doi.org/10.1016/j.cej.2008.05.001

    Article  CAS  Google Scholar 

  65. Qiu, Q., Jiang, X., Lv, G., Chen, Z., Lu, S., Ni, M., Yan, J., Deng, X.: Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol. 335, 156–163 (2018). https://doi.org/10.1016/j.powtec.2018.05.003

    Article  CAS  Google Scholar 

  66. Al-Jubouri, S.M., Holmes, S.M.: Immobilization of cobalt ions using hierarchically porous 4A zeolite-based carbon composites: Ion-exchange and solidification. J. Water Process Eng. 33, 101059 (2020). https://doi.org/10.1016/j.jwpe.2019.101059

    Article  Google Scholar 

  67. Pratama, B.S., Hambali, E., Yani, M., Matsue, N.: Kinetic and isotherm studies of Cu (II) adsorption by beads and film of alginate/zeolite 4A composites. IOP Conf. Ser. Earth Environ. Sci. 1, 012013 (2021)

    Article  Google Scholar 

  68. Xie, F., Lin, X., Wu, X., Xie, Z.: Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta 74(4), 836–843 (2008). https://doi.org/10.1016/j.talanta.2007.07.018

    Article  CAS  PubMed  Google Scholar 

  69. Taamneh, Y., Sharadqah, S.: The removal of heavy metals from aqueous solution using natural Jordanian zeolite. Appl. Water Sci. 7(4), 2021–2028 (2017). https://doi.org/10.1007/s13201-016-0382-7

    Article  CAS  Google Scholar 

  70. Elwakeel, K., El-Bindary, A., Kouta, E.: Retention of copper, cadmium and lead from water by Na-Y-Zeolite confined in methyl methacrylate shell. J. Environ. Chem. Eng. 5(4), 3698–3710 (2017). https://doi.org/10.1016/j.jece.2017.06.049

    Article  CAS  Google Scholar 

  71. Pratti, L.M., Reis, G.M., dos Santos, F.S., Gonçalves, G.R., Freitas, J.C., de Pietre, M.K.: Effects of textural and chemical properties of β-zeolites on their performance as adsorbents for heavy metals removal. Environ. Earth Sci. 78(17), 1–14 (2019). https://doi.org/10.1007/s12665-019-8568-6

    Article  CAS  Google Scholar 

  72. Du, X., Cui, S., Wang, Q., Han, Q., Liu, G., Energy, S.: Non-competitive and competitive adsorption of Zn (II), Cu (II), and Cd (II) by a granular Fe-Mn binary oxide in aqueous solution. Environ. Progress (2021). https://doi.org/10.1002/ep.13611

    Article  Google Scholar 

  73. Hernández-Montoya, V., Pérez-Cruz, M.A., Mendoza-Castillo, D.I., Moreno-Virgen, M., Bonilla-Petriciolet, A.: Competitive adsorption of dyes and heavy metals on zeolitic structures. J. Environ. Manage. 116, 213–221 (2013). https://doi.org/10.1016/j.jenvman.2012.12.010

    Article  CAS  PubMed  Google Scholar 

  74. Jeon, C.-S., Park, S.-W., Baek, K., Yang, J.-S., Park, J.-G.: Application of iron-coated zeolites (ICZ) for mine drainage treatment. Korean J. Chem. Eng. 29(9), 1171–1177 (2012). https://doi.org/10.1007/s11814-012-0013-4

    Article  CAS  Google Scholar 

  75. Nguyen, T.C., Loganathan, P., Nguyen, T.V., Vigneswaran, S., Kandasamy, J., Naidu, R.: Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chem. Eng. J. 270, 393–404 (2015). https://doi.org/10.1016/j.cej.2015.02.047

    Article  CAS  Google Scholar 

  76. Ortiz, F.G., Aguilera, P., Ollero, P.: Modeling and simulation of the adsorption of biogas hydrogen sulfide on treated sewage–sludge. Chem. Eng. J. 253, 305–315 (2014). https://doi.org/10.1016/j.cej.2014.04.114

    Article  CAS  Google Scholar 

  77. Aguilera, P., Ortiz, F.G.: Prediction of fixed-bed breakthrough curves for H2S adsorption from biogas: importance of axial dispersion for design. Chem. Eng. J. 289, 93–98 (2016). https://doi.org/10.1016/j.cej.2015.12.075

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (PROEX 23038.000509/2020-82). The authors also would like to thank to Laboratório de Raios-X and Professor José Marcos Sasaki for XRD analyses and Central Analítica- UFC for the SEM analysis (UFC/CT-INFRA/MCTI-SISNANO/Pró-equipamentos-CAPES).

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 (PROEX 23038.000509/2020-82) and PDSE 88881.189392/2018-01).

Author information

Authors and Affiliations

Authors

Contributions

AMMF, ARL, RFN: Made substantial contributions to the conception or design of the work. AMMF: Drafted the work. AMMF, RAB, ESO, MVMN, FMTL, ARL, RFN: Approved the version to be published. AMMF, RAB, ESO, MVMN, FMTL, ARL, RFN: Agree to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. AMMF, RAB, ESO, MVMN, FMTL, ARL, RFN: Acquisition, analysis, or interpretation of data. AMMF, RAB, ARL, RFN: Revised it critically for important intellectual content.

Corresponding author

Correspondence to Ronaldo F. Nascimento.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

França, A.M.M., Bessa, R.A., Oliveira, E.S. et al. In-situ cost-effective synthesis of zeolite A in Al2O3–SiO2 glass fibers for fixed bed adsorption of Cu2+, Cd2+ and Pb2+. Adsorption 27, 1067–1080 (2021). https://doi.org/10.1007/s10450-021-00337-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00337-5

Keywords

Navigation