Skip to main content

Advertisement

Log in

Multiscale design of a pressure swing adsorption process for natural gas purification

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption processes with activated carbons can be used to remove heavy hydrocarbons from a natural gas flow. Using the Pressure Swing Adsorption (PSA) technology, one can introduce a flexible solution in pre-existing gas-processing units to deal with new marked demands, as for example a C3+ free gas composition to be used as adsorbed natural gas to vehicles fuel tanks. However, designing a PSA process is a laborious task because several cycle configurations and materials are available to perform the separation. To fulfill such task, a multiscale procedure is proposed. Molecular simulation, through Grand Canonical Monte Carlo (GCMC) method, was used to obtain adsorption isotherms for natural gas components in three different carbons: WV-1050, NORIT R1 and MAXSORB. Bed geometry was set based on the minimum fluidization velocity and on the working capacity of the adsorbents. Working capacities were calculated using Langmuir Isotherm applied to Ideal Adsorbed Solution Theory (IAST) to represent the mixture. Each PSA column was simulated in Aspen Adsorption® and operates according to a four steps cycle (Skarstrom cycle): pressurization, adsorption at 40 bar, blowdown, and purge at 1 bar. The operating conditions of the process (such as flowrates, bed geometry and step times) were optimized, seeking the maximization of the process performance parameters: purity, recovery and productivity. A preliminary design of the PSA unit indicates the carbon WV1050 as the best adsorbent to produce C3+ free gas fuel, ideal for storage by adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. BP: Statistical Review of World Energy, 2020 | 69th Edition. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf (2020). Accessed August 24 2021

  2. Bastos-Neto, M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.: A theoretical and experimental study of charge and discharge cycles in a storage vessel for adsorbed natural gas. Adsorption 11, 147–157 (2005). https://doi.org/10.1007/s10450-005-4906-y

    Article  CAS  Google Scholar 

  3. Talu, O.: An overview of adsorptive storage of natural gas. Stud. Surf. Sci. Catal. 80, 655–662 (1993). https://doi.org/10.1016/S0167-2991(08)63573-9

    Article  CAS  Google Scholar 

  4. Menon, V.C., Komarneni, S.: Porous adsorbents for vehicular natural gas storage: a review. J. Porous Mater. 5, 43–58 (1998). https://doi.org/10.3103/S1062873811070379

    Article  CAS  Google Scholar 

  5. Mota, J.P.B., Rodrigues, A.E., Saatdjian, E., Tondeur, D.: Dynamics of natural gas adsorption storage systems employing activated carbon. Carbon N. Y. 35, 1259–1270 (1997). https://doi.org/10.1016/S0008-6223(97)00075-4

    Article  CAS  Google Scholar 

  6. Rios, R.B., Bastos-Neto, M., Amora, M.R., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.: Experimental analysis of the efficiency on charge/discharge cycles in natural gas storage by adsorption. Fuel 90, 113–119 (2011). https://doi.org/10.1016/j.fuel.2010.07.039

    Article  CAS  Google Scholar 

  7. Mota, J.P.B.: Impact of gas composition on natural gas storage by adsorption. AIChE J. 45, 986–996 (1999). https://doi.org/10.1002/aic.690450509

    Article  CAS  Google Scholar 

  8. Pupier, O., Goetz, V., Fiscal, R.: Effect of cycling operations on an adsorbed natural gas storage. Chem. Eng. Process.: Process Intensif. 44, 71–79 (2005). https://doi.org/10.1016/j.cep.2004.05.005

    Article  CAS  Google Scholar 

  9. Mileo, P.G.M., Cavalcante, C.L., Möllmer, J., Lange, M., Hofmann, J., Lucena, S.M.P.: Molecular simulation of natural gas storage in Cu-BTC metal-organic framework. Colloids Surf. A Physicochem. Eng. Asp. 462, 194–201 (2014)

  10. Esteves, I.A.A.C., Lopes, M.S., Nunes, P.M., Eusébio, M.F., Mota, J.P.B.: Automatic filtering and reodorization of adsorbed natural gas storage systems. Adsorption 11, 905–910 (2005). https://doi.org/10.1007/s10450-005-6044-y

    Article  Google Scholar 

  11. Esteves, I.A.A.C., Lopes, M.S.S., Nunes, P.M.C., Mota, J.P.B.: Adsorption of natural gas and biogas components on activated carbon. Sep. Purif. Technol. 62, 281–296 (2008). https://doi.org/10.1016/j.seppur.2008.01.027

    Article  CAS  Google Scholar 

  12. Ruthven, D.M., Farooq, S., Knaebel, K.S.: Pressure Swing Adsorption. Wiley-VCH, New York (1994)

    Google Scholar 

  13. Sircar, S.: Basic research needs for design of adsorptive gas separation processes. Ind. Eng. Chem. Res. 45, 5435–5448 (2006). https://doi.org/10.1021/ie051056a

    Article  CAS  Google Scholar 

  14. Cavenati, S., Grande, C.A., Rodrigues, A.E.: Separation of CH4/CO2/N2 mixtures by layered pressure swing adsorption for upgrade of natural gas. Chem. Eng. Sci. 61, 3893–3906 (2006). https://doi.org/10.1016/j.ces.2006.01.023

    Article  CAS  Google Scholar 

  15. Li, H., Liao, Z., Sun, J., Jiang, B., Wang, J., Yang, Y.: Modelling and simulation of two-bed PSA process for separating H2 from methane steam reforming. Chin. J. Chem. Eng. 27, 1870–1878 (2019). https://doi.org/10.1016/j.cjche.2018.11.022

    Article  CAS  Google Scholar 

  16. Moon, D.K., Lee, D.G., Lee, C.H.: H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process. Appl. Energy 183, 760–774 (2016). https://doi.org/10.1016/j.apenergy.2016.09.038

    Article  CAS  Google Scholar 

  17. Azpiri Solares, R.A., Wood, J.: A parametric study of process design and cycle configurations for pre-combustion PSA applied to NGCC power plants. Chem. Eng. Res. Des. 160, 141–153 (2020). https://doi.org/10.1016/j.cherd.2020.04.039

    Article  CAS  Google Scholar 

  18. Casas, N., Schell, J., Joss, L., Mazzotti, M.: A parametric study of a PSA process for pre-combustion CO2 capture. Sep. Purif. Technol. 104, 183–192 (2013). https://doi.org/10.1016/j.seppur.2012.11.018

    Article  CAS  Google Scholar 

  19. Wiheeb, A.D., Helwani, Z., Kim, J., Othman, M.R.: Pressure swing adsorption technologies for carbon dioxide capture. Sep. Purif. Rev. 45, 108–121 (2016). https://doi.org/10.1080/15422119.2015.1047958

    Article  CAS  Google Scholar 

  20. Fiandaca, G., Fraga, E.S., Brandani, S.: A multi-objective genetic algorithm for the design of pressure swing adsorption. Eng. Optim. 41, 833–854 (2009). https://doi.org/10.1080/03052150903074189

    Article  Google Scholar 

  21. Jain, S., Moharir, A.S., Li, P., Wozny, G.: Heuristic design of pressure swing adsorption: a preliminary study. Sep. Purif. Technol. 33, 25–43 (2003). https://doi.org/10.1016/S1383-5866(02)00208-3

    Article  CAS  Google Scholar 

  22. Lestinsky, P., Vecer, M., Navratil, P., Stehlik, P.: The removal of CO2 from biogas using a laboratory PSA unit: design using breakthrough curves. Clean Technol. Environ. Policy 17, 1281–1289 (2015). https://doi.org/10.1007/s10098-015-0912-2

    Article  CAS  Google Scholar 

  23. Ribeiro, A.M., Santos, J.C., Rodrigues, A.E.: PSA design for stoichiometric adjustment of bio-syngas for methanol production and co-capture of carbon dioxide. Chem. Eng. J. 163, 355–363 (2010). https://doi.org/10.1016/j.cej.2010.08.015

    Article  CAS  Google Scholar 

  24. Grande, C.A.: Advances in pressure swing adsorption for gas separation. ISRN Chem. Eng. 2012, 1–13 (2012). https://doi.org/10.5402/2012/982934

    Article  CAS  Google Scholar 

  25. Knaebel, K.S.: Adsorbent Selection. Adsorption Research, Inc. https://userpages.umbc.edu/~dfrey1/ench445/AdsorbentSel1B.pdf (2004). Accessed 24 August 2021

  26. Biloe, S., Goetz, V., Mauran, S.: Characterization of adsorbent composite blocks for methane storage. Carbon N. Y. 39, 1653–1662 (2001). https://doi.org/10.1016/S0008-6223(00)00288-8

    Article  CAS  Google Scholar 

  27. de Almeida Franco, S.V., da Cunha Ribeiro, D., Meneguelo, A.P.: A comprehensive approach to evaluate feed stream composition effect on natural gas processing unit energy consumption. J. Nat. Gas Sci. Eng. (2020). https://doi.org/10.1016/j.jngse.2020.103607

    Article  Google Scholar 

  28. Lucena, S.M.P., Gomes, V.A., Gonçalves, D.V., Mileo, P.G.M., Silvino, P.F.G.: Molecular simulation of the accumulation of alkanes from natural gas in carbonaceous materials. Carbon N. Y. 61, 624–632 (2013). https://doi.org/10.1016/j.carbon.2013.05.046

    Article  CAS  Google Scholar 

  29. Dubbeldam, D., Calero, S., Ellis, D.E., Snurr, R.Q.: RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2016). https://doi.org/10.1080/08927022.2015.1010082

    Article  CAS  Google Scholar 

  30. de Oliveira, J.C.A., Galdino, A.L., Gonçalves, D.V., Silvino, P.F.G., Cavalcante, C.L., Bastos-Neto, M., Azevedo, D.C.S., Lucena, S.M.P.: Representative pores: an efficient method to characterize activated carbons. Front. Chem. 8, 1–9 (2021). https://doi.org/10.3389/fchem.2020.595230

    Article  CAS  Google Scholar 

  31. Lucena, S.M.P., Cavalcante, C.L.: Adsorption equilibrium in one-dimensional molecular sieve: a study of force fields effect on linear alkanes molecules. Mol. Simul. 34, 1337–1349 (2008). https://doi.org/10.1080/08927020802301896

    Article  CAS  Google Scholar 

  32. Lucena, S.M.P., Snurr, R.Q., Cavalcante, C.L.: Studies on adsorption equilibrium of xylenes in AEL framework using biased GCMC and energy minimization. Microporous Mesoporous Mater. 111, 89–96 (2008). https://doi.org/10.1016/j.micromeso.2007.07.021

    Article  CAS  Google Scholar 

  33. Peixoto, H.R., Gonçalves, D. V., Torres, E.B., Lucena, S.M.P.: Carbon natural gas storage performance as predicted by multiscale modeling. Chem. Eng. J. 426, 131593 (2021).

  34. Myers, A.L., Prausnitz, J.M.: Thermodynamics of mixed-gas adsorption A. AIChE J. 11, 121–127 (1965). https://doi.org/10.1002/aic.690110125

    Article  CAS  Google Scholar 

  35. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  36. Skarstrom, C.W.: Method and apparatus for fractionating gaseous mixtures by adsorption. US Patent 2,944,627, 12 July 1960. (1960)

  37. Peng, D., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976). https://doi.org/10.1021/i160057a011

    Article  CAS  Google Scholar 

  38. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. Wiley, New York (2002)

    Google Scholar 

  39. Aspen Technology Inc.: Aspen Adsim 2004.1 Adsorption Reference Guide. Aspentech, Massachusetts (2004)

  40. Sinnott, R.K., Towler, G.: Chemical Engineering Design. Butterworth-Heinemann, Oxford (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastião M. P. Lucena.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 996 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaranta, I.C.C., Pinheiro, L.S., Gonçalves, D.V. et al. Multiscale design of a pressure swing adsorption process for natural gas purification. Adsorption 27, 1055–1066 (2021). https://doi.org/10.1007/s10450-021-00330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-021-00330-y

Keywords

Navigation