Skip to main content
Log in

Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The experiments were to study the effects of Se-yeast on immune and antioxidant in Selenium(Se)-deprived Pishan red sheep in Southern Xinjiang, China. The samples of soil, forage, and animal tissues were collected, and used for measuring mineral content, physiological parameter, and biochemical values. These findings showed that the Se contents in affected soil and forage were markedly lower than those from unaffected soil and forage (P < 0.01). Se in affected blood and wool were also extremely lower than those from healthy Pishan red sheep (P < 0.01). The hemoglobin, packed cell volume, platelet count, Glutathione peroxidase, and total antioxidant capacity in the affected Pishan red sheep were markedly lower than those from healthy ones too (P < 0.01). The levels of malondialdehyde, total nitric oxide synthase, and lipid peroxide in Pishan red sheep from affected pastures were extremely higher than those from healthy ones (P < 0.01). The levels of interleukin (IL)-1β, Interleukin-2, tumor necrosis factor-α and interleukin-6 from serum were markedly decreased in affected Pishan red sheep(P < 0.01). The Pishan red sheep in Se-deprived pasture were treated by orally with Se-yeast, the amount of Se in the blood markedly increased in treated animals. Meanwhile, the immune and antioxidant indicator was returned to the healthy values. Consequently, our findings were indicated that Se-deprived forage caused oxidative damage, and a serious threat to the immune function in animals. The Se-yeast is more effective in the Se-deficient Pishan red sheep including blood Se content, immune function and the antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data available on request due to restrictions privacy. The data presented in this study are available on request from the corresponding author. The data are not publicly available due to this paper is part of a series of studies, and disclosure of data may influence the publication of subsequent papers.

References

  1. Lv X, Chen L, He S, Liu C (2020) Effect of nutritional restriction on the hair pollicles development and skin transcriptome of Chinese Merino Sheep. Animals 10(6):1058. https://doi.org/10.3390/ani10061058

    Article  PubMed Central  Google Scholar 

  2. Wei C, Luo H, Zhao B, Tian K (2020) The effect of integrating genomic information into genetic evaluations of Chinese Merino Sheep. Biol Trace Elem Res 10(4):569. https://doi.org/10.3390/ani10040569

    Article  Google Scholar 

  3. Shen XY, Song CJ (2020) Responses of Chinese Merino Sheep (Junken Type) on Cu-deprived natural pasture. Biol Trace Elem Res 199(4):1–7. https://doi.org/10.1007/s12011-020-02214-8

    Article  CAS  Google Scholar 

  4. Michael TH, Paul RC (2019) New directions for understanding the codon redefinition required for selenocysteine incorporation. Biol Trace Elem Res 192(1):18–25. https://doi.org/10.1007/s12011-019-01827-y

    Article  CAS  Google Scholar 

  5. Luo G, Zhao H, Wen Q, Wang ZB, Zhang YG (2010). Effects of se-yeast in prepatrum dairy ration on blood se contents and anti-oxidant capacity. China Feed 34–36. https://doi.org/10.15906/j.cnki.cn11-2975/s.2010.16.008

  6. Wang CR, Wang JQ, Zhao GQ, Zhou ZF, Wei HY (2009) Effects of supplementary vitamin E and Se for cows on growth and immune of neonatal calves. Chinese J Vet Sci 29(12):1625–1628. https://doi.org/10.16303/j.cnki.1005-4545.2009.12.015

    Article  CAS  Google Scholar 

  7. Huo B, Wu T, Song CJ, Shen XY (2020) Effects of Se deficiency in the environment on antioxidant systems of Wumen semi-fine wool sheep. Pol J Environ Stud 29(2):1–9. https://doi.org/10.15244/pjoes/109492

    Article  CAS  Google Scholar 

  8. El-Ramady H, Faizy SE-D, Abdalla N, Taha H (2020) Selenium and selenium Yeast Biofortification for HumanHealth: opportunities and Challenges. Soil Syst 4(57):57. https://doi.org/10.3390/soilsystems4030057

    Article  CAS  Google Scholar 

  9. Li YF, He J, Shen XY (2020) Effects of Nano-selenium poisoning on immune function in the Wumeng Semi-fine wool sheep. Biol Trace Elem Res 198(3):515–520. https://doi.org/10.1007/s12011-020-02408-0

    Article  CAS  Google Scholar 

  10. Liu KY, Liu HL, Zhang T, Mu LL, Liu XQ, Li GY (2019) Effects of vitamin E and selenium on growth performance, antioxidant capacity, and metabolic parameters in growing furring blue foxes (Alopex lagopus). Biol Trace Elem Res 192(2):183–195. https://doi.org/10.1007/s12011-019-1655-4

    Article  CAS  PubMed  Google Scholar 

  11. Shen XY, Zhang J, Zhang RD (2014) Phosphorus metabolic disorder of Guizhou semi-fine wool sheep. PLoS ONE 9(2):e89472. https://doi.org/10.1371/journal.pone.0089472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huo B, Wu T, Song CJ, Shen XY (2020) Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol Trace Elem Res 194(1):152–158. https://doi.org/10.1007/s12011-019-01751-1

    Article  CAS  PubMed  Google Scholar 

  13. Huo B, Wu T, Song CJ, Shen XY (2019) Effects of selenium deficiency in alpine meadow on antioxidant systems of yaks. China Anim Husb Vet Med 46(04):1053–1062. https://doi.org/10.16431/j.cnki.1671-7236.2019.04.012

    Article  Google Scholar 

  14. Aram S, Bahram DN, Siamak AR, Ehsan A (2020) Platelet selenium indices as useful diagnostic surrogate for assessment of selenium status in lambs: an experimental comparative study on the efficacy of sodium selenite vs selenium nanoparticles. Biol Trace Elem Res 194(2):401–409. https://doi.org/10.1007/s12011-019-01784-6

    Article  CAS  Google Scholar 

  15. Zhang L, Jiao T, Zheng ZC, Liu CQ, Zhou XH, Feng RL (2005) Analysis of Se concentrations in study farm of Sanjiaocheng in Qinghai at different seasons. J Tradit Chin Vet Med 4(05):17–19. https://doi.org/10.13823/j.cnki.jtcvm.2005.05.006

    Article  Google Scholar 

  16. Huo B, Wu T, Xiao H, Shen XY (2019) Effect of copper contaminated pasture on mineral metabolism in the Wumeng semi-finewool sheep. Asian J Ecotoxicol 14(6):1–9

    Google Scholar 

  17. Shen X, Min X, Zhang S, Song C, Xiong K (2020) Effect of heavy metal contamination in the environment on antioxidant function in Wumeng semi-fine wool sheep in Southwest China. Biol Trace Elem Res 198(01):505–514. https://doi.org/10.1007/s12011-020-02081-3

    Article  CAS  PubMed  Google Scholar 

  18. Chi YK, Huo B, Shen XY (2020) Distribution characteristics of selenium nutrition on the natural habitat of Przewalski’s Gazelle. Pol J Environ Stud 29(1):67–77. https://doi.org/10.15244/pjoes/104661

    Article  CAS  Google Scholar 

  19. Huo B, Wu T, Chi YK, Min XY, Shen XY (2019) Effect of molybdenum fertilizer treatment to copper pollution meadow on copper metabolism in Wumeng semi-fine wool sheep. J Dom Anim Ecol 40(07):44–49 (CNKI:SUN:JCST.0.2019-07-010)

    Google Scholar 

  20. Grace ND, Knowles SO (2002) A reference curve using blood selenium concentration to diagnose selenium deficiency and predict growth responses in lambs. N Z Vet J 50(4):163–165. https://doi.org/10.1080/00480169.2002.36303

    Article  CAS  PubMed  Google Scholar 

  21. Shen XY, Huo B, Wu T, Song CJ, Chi YK (2019) iTRAQ-based proteomic analysis to identify molecular mechanisms of the selenium deficiency response in the Przewalski’s gazelle. J Proteomics 203(1):103389. https://doi.org/10.1016/j.jprot.2019.103389

    Article  CAS  PubMed  Google Scholar 

  22. Chi YK, Zhang ZZ, Song CJ, Xiong KN, Shen XY (2019) Effects of fertilization on physiological and biochemical parameters of Wumeng sheep in China’s Wumeng prairie. Pol J Environ Stud 29(1):79–85. https://doi.org/10.15244/pjoes/100481

    Article  CAS  Google Scholar 

  23. Zeng R, Muhammad UF, Zhang G, Tang ZC (2020) Dissecting the potential of selenoproteins extracted from selenium-enriched rice on physiological, biochemical and anti-ageing effects in vivo. Biol Trace Elem Res 196(1):119–130. https://doi.org/10.1007/s12011-019-01896-z

    Article  CAS  PubMed  Google Scholar 

  24. Rankaljeet K, Preety G, Polkit R, Naveen K (2011) Protective role of selenium against hemolytic anemia is mediated through redox modulation. Biol Trace Elem Res 189(2):490–500. https://doi.org/10.1007/s12011-018-1483-y

    Article  CAS  Google Scholar 

  25. Tapiero H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57(3–4):134–144. https://doi.org/10.1016/S0753-3322(03)00035-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Davis PA, Mcdowell LR, Wilkinson NS, Buergelt CD, Alstyne RV, Weldon RN, Marshall TT, Matsuda-Fugisaki EY (2008) Comparative effects of various dietary levels of Se as sodium selenite or Se yeast on blood, wool, and tissue Se concentrations of wether sheep. Small Ruminant Res 74(1):149–158. https://doi.org/10.1016/j.smallrumres.2007.05.003

    Article  Google Scholar 

  27. Burk RF, Hill KE, Motley AK (2003) Selenoprotein metabolism and function: evidence of more than one function for selenoprotein P. J Nutr 133(5 suppl 1):1517S-S1520. https://doi.org/10.1038/sj.ijo.0802279

    Article  CAS  PubMed  Google Scholar 

  28. Sanchez J, Montes P, Jimenez A, Andres S (2007) Prevention of clinical mastitis with barium selenate in dairy goats from a selenium-deficient area. J Dairy Sci 90(5):2350–2354. https://doi.org/10.3168/jds.2006-616

    Article  CAS  PubMed  Google Scholar 

  29. Xin GX, Long RJ, Shang Z, Ding LM, Guo XS (2012) Status of some selected major and trace elements in pasture soil from northeast of the Qinghai-Tibetan Plateau. Acta Pratac Sin 21(02):8–17 (CNKI:SUN:CYXB.0.2012-02-001)

    Google Scholar 

  30. Helder L, Egon H, Carolina R, Jimenez PS, Correa DB (2020) Effects of maternal dietary cottonseed on the profile of minerals in the testes of the lamb. Biol Trace Elem Res 197(1):165–172. https://doi.org/10.1007/s12011-019-01971-5

    Article  CAS  Google Scholar 

  31. Corbera JA, Morales M, Pulido M, Gutierrez C (2003) An outbreak of nutritional muscular dystrophy in dromedary camels. J Appl Anim Res 23(1):117–122. https://doi.org/10.1080/09712119.2003.9706775

    Article  Google Scholar 

  32. Zhao K, Huo B, Shen XY (2020) Studies on antioxidant capacity in selenium-deprived the Choko yak in the Shouqu prairie. Biol Trace Elem Res 199(1–4):1–6. https://doi.org/10.1007/s12011-020-02461-9

    Article  CAS  Google Scholar 

  33. Emmanuelchide O, Charle O, Uchenna O (2011) Hematological parameters in association with outcomes in sickle cell anemia patients. Indian J Med Sci 65(9):393–401. https://doi.org/10.4103/0019-5359.108955

    Article  PubMed  Google Scholar 

  34. Wu BY, Muhammad JM, Fang J, Peng X (2019) The Protective role of selenium against AFB1-induced liver apoptosis by death receptor pathway in broilers. Biol Trace Elem Res 191(2):453–463. https://doi.org/10.1007/s12011-018-1623-4

    Article  CAS  PubMed  Google Scholar 

  35. Han YH, Kim SU, Kwon TH, Lee DS, Ha HL (2012) Peroxiredoxin II is essential for preventing hemolytic anemia from oxidative stress through maintaining hemoglobin stability. Biochem Biophys Res Commun 426(3):427–432. https://doi.org/10.1016/j.bbrc.2012.08.113

    Article  CAS  PubMed  Google Scholar 

  36. Musa I, Bitto II, Ayoade JA, Oyedipe EO (2018) Serum immunoglobulins and lipid profile of sheep as affected by selenium and Vitamin E supplementation. Int J Vet Sci Technol 2(1):026–029. https://doi.org/10.13140/RG.2.2.34038.86086

    Article  Google Scholar 

  37. Liao C, Hardison RC, Kenentt MJ (2008) Selenoproteins regulate stress erythroid progenitors and spleen microenvironment during stress erythropoiesis. Blood 131(23):2568–2580. https://doi.org/10.1182/BLOOD-2017-08-800607

    Article  Google Scholar 

  38. Kaushal N, Hegde S, Lumadue J, Paulson RF, Prabhu KS (2011) The regulation of erythropoiesis byselenium in mice. Antioxid Redox Sign 14(8):1403–1412. https://doi.org/10.1089/ars.2010.3323

    Article  CAS  Google Scholar 

  39. Liao C, Carlson BA, Paulson RF (2018) The intricaterole of selenium and selenoproteins in erythropoiesis. Free Radic Bio Med 127(1):165–171. https://doi.org/10.1016/j.freeradbiomed.2018.04.578

    Article  CAS  Google Scholar 

  40. Chen M, Mahfuz S, Cui Y, Jia LY, Liu ZJ, Song H (2019) The antioxidant status of serum and egg yolk in layer fed with mushroom stembase (Flammulina velutipes). Pak J Zool 52(1):389–392. https://doi.org/10.17582/journal.pjz/2020.52.1.sc6

    Article  CAS  Google Scholar 

  41. Huo B, He J, Shen XY (2020) Effects of selenium-deprived habitat on the immune index and antioxidant capacity of Przewalski’s Gazelle. Biol Trace Elem Res 198(4):149–156. https://doi.org/10.1007/s12011-020-02070-6

    Article  CAS  PubMed  Google Scholar 

  42. Gabriele P, Natasha I, Mariapoala C, Giovanni P, Federica M, Vincenzo A, Francesco S, Domenica A (2017) Alessandra B (2017) Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev 3:1–13. https://doi.org/10.1155/2017/8416763

    Article  CAS  Google Scholar 

  43. Song CJ, Shen XY (2020) Effects of environmental zinc deficiency on antioxidant system function in Wumeng semi-fine wool sheep. Biol Trace Elem Res 195(1):110–116. https://doi.org/10.1007/s12011-019-01840-1

    Article  CAS  PubMed  Google Scholar 

  44. Iqra B, Moolchand M, Pershotam K, Saeed AS, Hira S (2019) Effect of dietary selenium yeast supplementation on morphology and antioxidant status in testes of young goat. Pak J Zool 51(3):979–988. https://doi.org/10.17582/journal.pjz/2019.51.3.979.988

    Article  CAS  Google Scholar 

  45. Smith OB, Akinbamijo OO (1995) Micromutrients and reproduction in farm animals. Anim Reprod Sci 49:451–461. https://doi.org/10.1016/S0378-4320(00)00114-7

    Article  Google Scholar 

  46. Huma N, Sajid A, Khalid A, Wardah H, Moazama B, Shakeela P, Sadia M, Sajida M (2019) Toxic effect of insecticides mixtures on antioxidant enzymes in different organs of fish. Labeo rohita. Pak J Zool 51(4):1355–1361. https://doi.org/10.17582/journal.pjz/2019.51.4.1355.1361

    Article  CAS  Google Scholar 

  47. Li YF, Wang YC, Shen XY, Liu FY (2021) The combinations of sulfur and molybdenum fertilizations improved antioxidant capacity of grazing Guizhou semi-fine wool sheep under copper and cadmium stress. Ecotoxicol Environ Safe 222:112520. https://doi.org/10.1016/j.ecoenv.2021.112520

    Article  CAS  Google Scholar 

  48. Wu L, Zhang H, Xu C, Xia C (2016) Critical thresholds of antioxidant and immune function parameters for Se deficiency prediction in dairy cows. Biol Trace Elem Res 172(2):320–325. https://doi.org/10.1007/s12011-015-0606-y

    Article  CAS  PubMed  Google Scholar 

  49. Shen XY, Huo B, Gan SQ (2020) Effects of selenium Yeast on antioxidant capacity in Se-Deprived Tibetan Gazelle (Procapra picticaudata) in the Qinghai-Tibet Plateau. Biol Trace Elem Res 199(1–4):1–8. https://doi.org/10.1007/s12011-020-02206-8

    Article  CAS  Google Scholar 

  50. Zhao J, Xing H, Liu C (2016) Effect of selenium deficiency on nitric oxide and heat shock proteins in chicken erythrocytes. Biol Trace Elem Res 171(1):208–213. https://doi.org/10.1007/s12011-015-0527-9

    Article  CAS  PubMed  Google Scholar 

  51. Meng T, Liu YL, Xie CY (2019) Effects of different selenium sources on laying performance, egg selenium concentration, and antioxidant capacity in laying hens. Biol Trace Elem Res 189(2):548–555. https://doi.org/10.1007/s12011-018-1490-z

    Article  CAS  PubMed  Google Scholar 

  52. Quan P, Tan W, Xu C (2002) The effects of selenium deficiency, oxidative stress, coxsackievirus B infection on the pathogenesis of Keshan disease. J Xi'an Med Univ (Chin Ed) 4(02):101–103+107, CNKI:SUN:XAYX.0.2002–02–001

  53. Song CJ, Gan SQ, He J (2021) Shen XY (2020) Effects of nano-zinc on immune function in Qianbei-Pockmarked goats. Biol Trace Elem Res 199:578–584. https://doi.org/10.1007/s12011-020-02182-z

    Article  CAS  PubMed  Google Scholar 

  54. Cao C, Fan R, Chen M, Li XJ, Xing MY, Zhu FT (2017) Inflammatory response occurs in veins of broiler chickens treated with a selenium deficiency diet. Biol Trace Elem Res 183(2):1–9. https://doi.org/10.1007/s12011-017-1145-5

    Article  CAS  Google Scholar 

  55. Amy S, Michelle J, Louise MCW, Amanda H (2010) Putative GTPase GIMAP1 is critical for the development of mature B and T lymphocytes. Blood 115(16):3249–3257. https://doi.org/10.1182/blood-2009-08-237586

    Article  CAS  Google Scholar 

  56. Ashley G, Jeffrey C (2014) Effects of inorganic or organic selenium on immunoglobulins in swine. J Anim Sci Biotechnol 4(2):47–47. https://doi.org/10.1186/2049-1891-4-47

    Article  CAS  Google Scholar 

  57. Xu J, Gong Y, Sun Y (2020) Impact of selenium deficiency on inflammation, oxidative stress, and phagocytosis in mouse macrophages. Biol Trace Elem Res 194(1):237–243. https://doi.org/10.1007/s12011-019-01775-7

    Article  CAS  PubMed  Google Scholar 

  58. Bakhshalinejad R, Reza AMK, Zoidis E (2018) Effects of different dietary sources and levels of selenium supplements on growth performance, antioxidant status and immune parameters in Ross 308 broiler chickens. Br Poult Sci 59(1):81–91. https://doi.org/10.1080/00071668.2017.1380296

    Article  CAS  PubMed  Google Scholar 

  59. Chang WC, Chen CH, Yu YM (2010) P385 chlorogenic acid attenuates adhesion molecules upregulation in IL-1β treated huvecs. Atherosclerosis Supp 11(2):98–98. https://doi.org/10.1016/S1567-5688(10)70452-9

    Article  Google Scholar 

  60. Liu LN, Chen F, Qin SY, Ma JF, Li L, Jin TM, Zhao RL (2019) Effects of selenium-enriched yeast improved aflatoxin B1-induced changes in growth performance, antioxidation capacity, IL-2 and IFN-γ contents, and gene expression in mice. Biol Trace Elem Res 191(1):183–188. https://doi.org/10.1007/s12011-018-1607-4

    Article  CAS  PubMed  Google Scholar 

  61. Ahmed KP, Zhang YM, Hang Y, Teng XH, Li S (2018) Selenium deficiency affects immune function by influencing selenoprotein and cytokine expression in chicken spleen. Biol Trace Elem Res 187(2):506–516. https://doi.org/10.1007/s12011-018-1396-9

    Article  CAS  Google Scholar 

  62. Shen XY, Huo B, Li YF, Song CJ, Wu T, He J (2021) Response of the critically endangered Przewalski’s gazelle (Procapra przewalskii) to selenium deprived environment. J Proteomics 241(Suppl. 5):104218. https://doi.org/10.1016/j.jprot.2021.104218

    Article  CAS  PubMed  Google Scholar 

  63. Cristaldi LA, Mcdowell LR, Buergelt CD, Davis PA, Wilkinson NS, Martin FG (2004) Tolerance of inorganic selenium in wether sheep. Small Ruminant Res 56(1):205–213. https://doi.org/10.1016/j.smallrumres.2004.06.001

    Article  Google Scholar 

  64. Kim H, Soest PJV, Combs GF (1997) Studies on the effects of selenium on rumen microbial fermentation in vitro. Biol Trace Elem Res 56(2):203–213. https://doi.org/10.1007/BF02785393

    Article  CAS  PubMed  Google Scholar 

  65. Gresakova L, Cobanova K, Faix S  (2013) Selenium retention in lambs fed diets supplemented with selenium from inorganic or organic sources. Small Ruminant Res 111(s 1–3). https://doi.org/10.1016/j.smallrumres.2012.10.009

  66. Shi L, Xun W, Yue W, Zhang C, Ren Y, Lei S, Qian W, Yang R, Lei F (2011) Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats[J]. Small Ruminant Res 96(1):49–52. https://doi.org/10.1016/j.smallrumres.2010.11.005

    Article  Google Scholar 

  67. Bureaux CA (1993) The mineral nutrition of livestock. Vet J 161(1):70–71. https://doi.org/10.1053/tvjl.2000.0463

    Article  Google Scholar 

  68. Kuricov S, Boldirov K, Bobek R, Levkut M (2003) Chicken selenium status when fed a diet supplemented with Se-yeast. Acta Vet Brno 72(3):339–346. https://doi.org/10.2754/avb200372030339

    Article  Google Scholar 

Download references

Funding

This work was supported by the Innovation and Development Supporting Plan Project of Key Industries in Southern Xinjiang (2021DB014) and the National Natural Science Foundation of China (41671041).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J.Q.; methodology, J.Q. and P.Z.; software, J.Q. and P.Z.; validation, J.Q., P.Z. and X.S.; formal analysis, J.Q. and P.Z.; investigation, J.Q. and X.S.; resources, J.Q.; data curation, J.Q. and P.Z.; writing—original draft preparation, J.Q., P.Z.and X.S.; writing—review and editing, J.Q., P.Z. and X.S.; visualization, J.Q. and P.Z.; supervision, J.Q. and P.Z.; project administration, J.Q., P.Z. and X.S.; funding acquisition, X.S.. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xiaoyun Shen.

Ethics declarations

Ethics Approval and Consent to Participate

The Pishan red sheep that were used in this study were cared for as outlined in the Guide for the Care and Use of Animals in Agricultural Research and Teaching Consortium (Federation of Animals Science Societies, 2010). Sample collections from animals were approved by Southwest University of Science and Technology in China, Institutional Animal Care and Use Committee (Project B00334). All authors confrm ethical responsibilities.

Consent for Publication

Agree.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jie Qiu and Ping Zhou are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Zhou, P. & Shen, X. Effects of Se-Yeast on Immune and Antioxidant in the Se-Deprived Pishan Red Sheep. Biol Trace Elem Res 200, 2741–2749 (2022). https://doi.org/10.1007/s12011-021-02896-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02896-8

Keywords

Navigation