Skip to main content

Advertisement

Log in

Mitochondrial stress response in drug-induced liver injury

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Drug-induced liver injury (DILI) caused by the ingestion of medications, herbs, chemicals or dietary supplements, is a clinically widespread health problem. The underlying mechanism of DILI is the formation of reactive metabolites, which trigger mitochondrial oxidative stress and the opening of mitochondrial permeability transition (MPT) pores through direct toxicity or immune response, leading to cell inflammation, apoptosis, and necrosis. Traditionally, mitochondria play an indispensable role in maintaining the physiological and biochemical functions of cells by producing ATP and mediating intracellular signal transduction; drugs can typically stimulate the mitochondria and, in the case of sustained stress, can eventually cause impairment of mitochondrial function and metabolic activity. Meanwhile, the mitochondrial stress response, as an adaptive protective mechanism, occurs when mitochondrial homeostasis is threatened. In this review, we summarize the relevant frontier researches of the protective effects of mitochondrial stress response in DILI as well as the potential related mechanisms, thus providing some thoughts for the clinical treatment of DILI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 482:426–431. https://doi.org/10.1016/j.bbrc.2016.11.088

    Article  CAS  PubMed  Google Scholar 

  2. Mittler R (2017) ROS are good. Trends Plant Sci 22:11–19. https://doi.org/10.1016/j.tplants.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  3. Garcia-Cortes M, Robles-Diaz M, Stephens C, Ortega-Alonso A, Lucena MI, Andrade RJ (2020) Drug induced liver injury: an update. Arch Toxicol 94:3381–3407. https://doi.org/10.1007/s00204-020-02885-1

    Article  CAS  PubMed  Google Scholar 

  4. Aithal GP (2019) Drug-induced liver injury. Medicine 47:734–739. https://doi.org/10.1016/j.mpmed.2019.08.005

    Article  Google Scholar 

  5. Teschke R (2018) Top-ranking drugs out of 3312 drug-induced liver injury cases evaluated by the Roussel Uclaf causality assessment method. Expert Opin Drug Metab Toxicol 14:1169–1187. https://doi.org/10.1080/17425255.2018.1539077

    Article  CAS  PubMed  Google Scholar 

  6. Han D, Dara L, Win S, Than TA, Yuan L, Abbasi SQ, Liu ZX, Kaplowitz N (2013) Regulation of drug-induced liver injury by signal transduction pathways: critical role of mitochondria. Trends Pharmacol Sci 34:243–253. https://doi.org/10.1016/j.tips.2013.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaeschke H (2018) Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res. https://doi.org/10.18053/jctres.04.201801.005

    Article  PubMed  PubMed Central  Google Scholar 

  8. Duan L, Woolbright BL, Jaeschke H, Ramachandran A (2020) Late Protective effect of netrin-1 in the murine acetaminophen hepatotoxicity model. Toxicol Sci 175:168–181. https://doi.org/10.1093/toxsci/kfaa041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jaeschke H, Akakpo JY, Umbaugh DS, Ramachandran A (2020) Novel therapeutic approaches against acetaminophen-induced liver injury and acute liver failure. Toxicol Sci 174:159–167. https://doi.org/10.1093/toxsci/kfaa002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang J, Li M, Zhang W, Gu A, Dong J, Li J, Shan A (2018) Protective effect of N-acetylcysteine against oxidative stress induced by zearalenone via mitochondrial apoptosis pathway in SIEC02 cells. Toxins (Basel) 10:1–17. https://doi.org/10.3390/toxins10100407

    Article  CAS  Google Scholar 

  11. Li F, Qiu Y, Xia F, Sun H, Liao H, Xie A, Lee J, Lin P, Wei M, Shao Y et al (2020) Dual detoxification and inflammatory regulation by ceria nanozymes for drug-induced liver injury therapy. Nano Today. https://doi.org/10.1016/j.nantod.2020.100925

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang SF, Chen S, Tseng LM, Lee HC (2020) Role of the mitochondrial stress response in human cancer progression. Exp Biol Med 245:861–878. https://doi.org/10.1177/1535370220920558

    Article  CAS  Google Scholar 

  13. Xue F, Hua Z (2017) Signaling pathway of mitochondrial stress. Front Lab Med 1:40–42. https://doi.org/10.1016/j.flm.2017.02.009

    Article  Google Scholar 

  14. D’Amico D, Sorrentino V, Auwerx J (2017) Cytosolic proteostasis networks of the mitochondrial stress response. Trends Biochem Sci 42:712–725. https://doi.org/10.1016/j.tibs.2017.05.002

    Article  CAS  PubMed  Google Scholar 

  15. Hill S, Van Remmen H (2014) Mitochondrial stress signaling in longevity: a new role for mitochondrial function in aging. Redox Biol 2:936–944. https://doi.org/10.1016/j.redox.2014.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lin S, Xing H, Zang T, Ruan X, Wo L, He M (2018) Sirtuins in mitochondrial stress: indispensable helpers behind the scenes. Ageing Res Rev 44:22–32. https://doi.org/10.1016/j.arr.2018.03.006

    Article  CAS  PubMed  Google Scholar 

  17. Seli E, Wang T, Horvath TL (2019) Mitochondrial unfolded protein response: a stress response with implications for fertility and reproductive aging. Fertil Steril 111:197–204. https://doi.org/10.1016/j.fertnstert.2018.11.048

    Article  CAS  PubMed  Google Scholar 

  18. Hill S, Sataranatarajan K, Van Remmen H (2018) Role of signaling molecules in mitochondrial stress response. Front Genet 9:225. https://doi.org/10.3389/fgene.2018.00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson NS, Haynes CM (2020) Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol 30:428–439. https://doi.org/10.1016/j.tcb.2020.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fessler E, Eckl EM, Schmitt S, Mancilla IA, Meyer-Bender MF, Hanf M, Philippou-Massier J, Krebs S, Zischka H, Jae LT (2020) A pathway coordinated by DELE1 relays mitochondrial stress to the cytosol. Nature 579:433–437. https://doi.org/10.1038/s41586-020-2076-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quiros PM, Prado MA, Zamboni N, D’Amico D, Williams RW, Finley D, Gygi SP, Auwerx J (2017) Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 216:2027–2045. https://doi.org/10.1083/jcb.201702058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tauber D, Parker R (2019) 15-Deoxy-Delta(12,14)-prostaglandin J2 promotes phosphorylation of eukaryotic initiation factor 2alpha and activates the integrated stress response. J Biol Chem 294:6344–6352. https://doi.org/10.1074/jbc.RA118.007138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Topf U, Wrobel L, Chacinska A (2016) Chatty mitochondria: keeping balance in cellular protein homeostasis. Trends Cell Biol 26:577–586. https://doi.org/10.1016/j.tcb.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  24. Callegari S, Dennerlein S (2018) Sensing the stress: a role for the UPR(mt) and UPR(am) in the quality control of mitochondria. Front Cell Dev Biol 6:31. https://doi.org/10.3389/fcell.2018.00031

    Article  PubMed  PubMed Central  Google Scholar 

  25. Coyne LP, Chen XJ (2018) mPOS is a novel mitochondrial trigger of cell death—implications for neurodegeneration. FEBS Lett 592:759–775. https://doi.org/10.1002/1873-3468.12894

    Article  CAS  PubMed  Google Scholar 

  26. Kim HE, Grant AR, Simic MS, Kohnz RA, Nomura DK, Durieux J, Riera CE, Sanchez M, Kapernick E, Wolff S et al (2016) Lipid biosynthesis coordinates a mitochondrial-to-cytosolic stress response. Cell 166:1539-1552e1516. https://doi.org/10.1016/j.cell.2016.08.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abeliovich H, Dengjel J (2016) Mitophagy as a stress response in mammalian cells and in respiring S. cerevisiae. Biochem Soc Trans 44:541–545. https://doi.org/10.1042/BST20150278

    Article  CAS  PubMed  Google Scholar 

  28. Eisner V, Picard M, Hajnoczky G (2018) Mitochondrial dynamics in adaptive and maladaptive cellular stress responses. Nat Cell Biol 20:755–765. https://doi.org/10.1038/s41556-018-0133-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Girerd S, Tosca L, Herault O, Vignon C, Biard D, Aggoune D, Dkhissi F, Bonnet ML, Sorel N, Desterke C et al (2018) Superoxide dismutase 2 (SOD2) contributes to genetic stability of native and T315I-mutated BCR-ABL expressing leukemic cells. Biochem Biophys Res Commun 498:715–722. https://doi.org/10.1016/j.bbrc.2018.03.023

    Article  CAS  PubMed  Google Scholar 

  30. Felson DT (2016) Safety of nonsteroidal antiinflammatory drugs. N Engl J Med 375:2595–2596. https://doi.org/10.1056/NEJMe1614257

    Article  PubMed  Google Scholar 

  31. Walters KM, Woessner KM (2016) An overview of nonsteroidal antiinflammatory drug reactions. Immunol Allergy Clin North Am 36:625–641. https://doi.org/10.1016/j.iac.2016.06.001

    Article  PubMed  Google Scholar 

  32. Lee WM (2017) Acetaminophen (APAP) hepatotoxicity—isn’t it time for APAP to go away? J Hepatol 67:1324–1331. https://doi.org/10.1016/j.jhep.2017.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hamilton LA, Collins-Yoder A, Collins RE (2016) Drug-induced liver injury. AACN Adv Crit Care 27:430–440. https://doi.org/10.4037/aacnacc2016953

    Article  PubMed  Google Scholar 

  34. McGill MR, Jaeschke H (2013) Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm Res 30:2174–2187. https://doi.org/10.1007/s11095-013-1007-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chao X, Wang H, Jaeschke H, Ding WX (2018) Role and mechanisms of autophagy in acetaminophen-induced liver injury. Liver Int 38:1363–1374. https://doi.org/10.1111/liv.13866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ramachandran A, Jaeschke H (2019) Acetaminophen hepatotoxicity: a mitochondrial perspective. Adv Pharmacol 85:195–219. https://doi.org/10.1016/bs.apha.2019.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iorga A, Dara L, Kaplowitz N (2017) Drug-induced liver injury: cascade of events leading to cell death, apoptosis or necrosis. Int J Mol Sci 18:1–25. https://doi.org/10.3390/ijms18051018

    Article  CAS  Google Scholar 

  38. Jetten MJ, Ruiz-Aracama A, Coonen ML, Claessen SM, van Herwijnen MH, Lommen A, van Delft JH, Peijnenburg AA, Kleinjans JC (2016) Interindividual variation in gene expression responses and metabolite formation in acetaminophen-exposed primary human hepatocytes. Arch Toxicol 90:1103–1115. https://doi.org/10.1007/s00204-015-1545-2

    Article  CAS  PubMed  Google Scholar 

  39. Attanasio S, Gernoux G, Ferriero R, De Cegli R, Carissimo A, Nusco E, Campione S, Teckman J, Mueller C, Piccolo P et al (2020) CHOP-c-JUN complex plays a critical role in liver proteotoxicity induced by mutant Z alpha1 antitrypsin. bioRxiv. https://doi.org/10.1101/2020.05.04.076752

    Article  Google Scholar 

  40. Melber A, Haynes CM (2018) UPR(mt) regulation and output: a stress response mediated by mitochondrial-nuclear communication. Cell Res 28:281–295. https://doi.org/10.1038/cr.2018.16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shan S, Shen Z, Song F (2018) Autophagy and acetaminophen-induced hepatotoxicity. Arch Toxicol 92:2153–2161. https://doi.org/10.1007/s00204-018-2237-5

    Article  CAS  PubMed  Google Scholar 

  42. Williams JA, Ding WX (2020) Role of autophagy in alcohol and drug-induced liver injury. Food Chem Toxicol 136:111075. https://doi.org/10.1016/j.fct.2019.111075

    Article  CAS  PubMed  Google Scholar 

  43. Baulies A, Ribas V, Nunez S, Torres S, Alarcon-Vila C, Martinez L, Suda J, Ybanez MD, Kaplowitz N, Garcia-Ruiz C et al (2015) Lysosomal cholesterol accumulation sensitizes to acetaminophen hepatotoxicity by impairing mitophagy. Sci Rep 5:18017. https://doi.org/10.1038/srep18017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ni HM, McGill MR, Chao X, Du K, Williams JA, Xie Y, Jaeschke H, Ding WX (2016) Removal of acetaminophen protein adducts by autophagy protects against acetaminophen-induced liver injury in mice. J Hepatol 65:354–362. https://doi.org/10.1016/j.jhep.2016.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shan S, Shen Z, Zhang C, Kou R, Xie K, Song F (2019) Mitophagy protects against acetaminophen-induced acute liver injury in mice through inhibiting NLRP3 inflammasome activation. Biochem Pharmacol 169:113643. https://doi.org/10.1016/j.bcp.2019.113643

    Article  CAS  PubMed  Google Scholar 

  46. McWilliams TG, Muqit MM (2017) PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 45:83–91. https://doi.org/10.1016/j.ceb.2017.03.013

    Article  CAS  PubMed  Google Scholar 

  47. Wang H, Ni HM, Chao X, Ma X, Rodriguez YA, Chavan H, Wang S, Krishnamurthy P, Dobrowsky R, Xu DX et al (2019) Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol 22:101148. https://doi.org/10.1016/j.redox.2019.101148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Du K, Ramachandran A, McGill MR, Mansouri A, Asselah T, Farhood A, Woolbright BL, Ding WX, Jaeschke H (2017) Induction of mitochondrial biogenesis protects against acetaminophen hepatotoxicity. Food Chem Toxicol 108:339–350. https://doi.org/10.1016/j.fct.2017.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jaeschke H, Duan L, Nguyen N, Ramachandran A (2019) Mitochondrial damage and biogenesis in acetaminophen-induced liver injury. Liver Res 3:150–156. https://doi.org/10.1016/j.livres.2019.10.002

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang T, Zhang Q, Guo J, Yuan H, Peng H, Cui L, Yin J, Zhang L, Zhao J, Li J et al (2016) Non-cytotoxic concentrations of acetaminophen induced mitochondrial biogenesis and antioxidant response in HepG2 cells. Environ Toxicol Pharmacol 46:71–79. https://doi.org/10.1016/j.etap.2016.06.030

    Article  CAS  PubMed  Google Scholar 

  51. Ramachandran A, Jaeschke H (2020) A mitochondrial journey through acetaminophen hepatotoxicity. Food Chem Toxicol 140:111282. https://doi.org/10.1016/j.fct.2020.111282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu X, Zhao H, Luo C, Du D, Huang J, Ming Q, Jin F, Wang D, Huang W (2019) Acetaminophen responsive miR-19b modulates SIRT1/Nrf2 signaling pathway in drug-induced hepatotoxicity. Toxicol Sci 170:476–488. https://doi.org/10.1093/toxsci/kfz095

    Article  CAS  PubMed  Google Scholar 

  53. Lazarska KE, Dekker SJ, Vermeulen NPE, Commandeur JNM (2018) Effect of UGT2B7*2 and CYP2C8*4 polymorphisms on diclofenac metabolism. Toxicol Lett 284:70–78. https://doi.org/10.1016/j.toxlet.2017.11.038

    Article  CAS  PubMed  Google Scholar 

  54. den Braver MW, Zhang Y, Venkataraman H, Vermeulen NP, Commandeur JN (2016) Simulation of interindividual differences in inactivation of reactive para-benzoquinone imine metabolites of diclofenac by glutathione S-transferases in human liver cytosol. Toxicol Lett 255:52–62. https://doi.org/10.1016/j.toxlet.2016.05.015

    Article  CAS  Google Scholar 

  55. Dara L, Liu ZX, Kaplowitz N (2016) Mechanisms of adaptation and progression in idiosyncratic drug induced liver injury, clinical implications. Liver Int 36:158–165. https://doi.org/10.1111/liv.12988

    Article  PubMed  Google Scholar 

  56. Kang SW, Haydar G, Taniane C, Farrell G, Arias IM, Lippincott-Schwartz J, Fu D (2016) AMPK activation prevents and reverses drug-induced mitochondrial and hepatocyte injury by promoting mitochondrial fusion and function. PLoS ONE 11:e0165638. https://doi.org/10.1371/journal.pone.0165638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wink S, Hiemstra SW, Huppelschoten S, Klip JE, van de Water B (2018) Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury. Arch Toxicol 92:1797–1814. https://doi.org/10.1007/s00204-018-2178-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dragovic G, Nikolic K, Dimitrijevic B, Jevtovic D, Salemovic D, Tomanovic N, Boricic I (2019) Severe hepatotoxicity induced by efavirenz in a treatment-naive, low body mass index HIV-infected, female patient with no hepatitis and other virus co-infections. Ultrastruct Pathol 43:220–223. https://doi.org/10.1080/01913123.2019.1673862

    Article  PubMed  Google Scholar 

  59. Chwiki S, Campos MM, McLaughlin ME, Kleiner DE, Kovacs JA, Morse CG, Abu-Asab MS (2017) Adverse effects of antiretroviral therapy on liver hepatocytes and endothelium in HIV patients: an ultrastructural perspective. Ultrastruct Pathol 41:186–195. https://doi.org/10.1080/01913123.2017.1282066

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ganta KK, Mandal A, Chaubey B (2017) Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol 33:69–82. https://doi.org/10.1007/s10565-016-9362-9

    Article  CAS  PubMed  Google Scholar 

  61. Polo M, Alegre F, Moragrega AB, Gibellini L, Marti-Rodrigo A, Blas-Garcia A, Esplugues JV, Apostolova N (2017) Lon protease: a novel mitochondrial matrix protein in the interconnection between drug-induced mitochondrial dysfunction and endoplasmic reticulum stress. Br J Pharmacol 174:4409–4429. https://doi.org/10.1111/bph.14045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Apostolova N, Gomez-Sucerquia LJ, Gortat A, Blas-Garcia A, Esplugues JV (2011) Autophagy as a rescue mechanism in efavirenz-induced mitochondrial dysfunction: a lesson from hepatic cells. Autophagy 7:1402–1404. https://doi.org/10.4161/auto.7.11.17653

    Article  CAS  PubMed  Google Scholar 

  63. Borsa M, Ferreira PL, Petry A, Ferreira LG, Camargo MM, Bou-Habib DC, Pinto AR (2015) HIV infection and antiretroviral therapy lead to unfolded protein response activation. Virol J 12:77. https://doi.org/10.1186/s12985-015-0298-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Alegre F, Moragrega AB, Polo M, Marti-Rodrigo A, Esplugues JV, Blas-Garcia A, Apostolova N (2018) Role of p62/SQSTM1 beyond autophagy: a lesson learned from drug-induced toxicity in vitro. Br J Pharmacol 175:440–455. https://doi.org/10.1111/bph.14093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Bruyn T, Stieger B, Augustijns PF, Annaert PP (2016) Clearance prediction of HIV protease inhibitors in man: role of hepatic uptake. J Pharm Sci 105:854–863. https://doi.org/10.1002/jps.24564

    Article  CAS  PubMed  Google Scholar 

  66. Ganta KK, Chaubey B (2019) Endoplasmic reticulum stress leads to mitochondria-mediated apoptosis in cells treated with anti-HIV protease inhibitor ritonavir. Cell Biol Toxicol 35:189–204. https://doi.org/10.1007/s10565-018-09451-7

    Article  PubMed  Google Scholar 

  67. Gibellini L, De Biasi S, Pinti M, Nasi M, Riccio M, Carnevale G, Cavallini GM, Sala de Oyanguren FJ, O’Connor JE, Mussini C et al (2012) The protease inhibitor atazanavir triggers autophagy and mitophagy in human preadipocytes. AIDS 26:2017–2026. https://doi.org/10.1097/QAD.0b013e328359b8be

    Article  CAS  PubMed  Google Scholar 

  68. Polus A, Bociaga-Jasik M, Czech U, Goralska J, Cialowicz U, Chojnacka M, Polus M, Jurowski K, DEMBINSKA-KIEC A, (2017) The human immunodeficiency virus (HIV1) protease inhibitor sanquinavir activates autophagy and removes lipids deposited in lipid droplets. J Physiol Pharmacol 68:283–293

    CAS  PubMed  Google Scholar 

  69. Chetty S, Ramesh M, Singh-Pillay A, Soliman ME (2017) Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 27:370–386. https://doi.org/10.1016/j.bmcl.2016.11.084

    Article  CAS  PubMed  Google Scholar 

  70. Sanjay S, Girish C, Toi PC, Bobby Z (2021) Gallic acid attenuates isoniazid and rifampicin-induced liver injury by improving hepatic redox homeostasis through influence on Nrf2 and NF-κB signalling cascades in wistar rats. J Pharm Pharmacol 73:1–14. https://doi.org/10.1093/jpp/rgaa048

    Article  Google Scholar 

  71. Zhang T, Ikejima T, Li L, Wu R, Yuan X, Zhao J, Wang Y, Peng S (2017) Impairment of mitochondrial biogenesis and dynamics involved in isoniazid-induced apoptosis of HepG2 cells was alleviated by p38 MAPK pathway. Front Pharmacol 8:753. https://doi.org/10.3389/fphar.2017.00753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jia ZL, Cen J, Wang JB, Zhang F, Xia Q, Wang X, Chen XQ, Wang RC, Hsiao CD, Liu KC et al (2019) Mechanism of isoniazid-induced hepatotoxicity in zebrafish larvae: activation of ROS-mediated ERS, apoptosis and the Nrf2 pathway. Chemosphere 227:541–550. https://doi.org/10.1016/j.chemosphere.2019.04.026

    Article  CAS  PubMed  Google Scholar 

  73. Liang Y, Zhou T, Chen Y, Lin D, Jing X, Peng S, Zheng D, Zeng Z, Lei M, Wu X et al (2017) Rifampicin inhibits rotenone-induced microglial inflammation via enhancement of autophagy. Neurotoxicology 63:137–145. https://doi.org/10.1016/j.neuro.2017.09.015

    Article  CAS  PubMed  Google Scholar 

  74. Lee EH, Baek SY, Park JY, Kim YW (2020) Rifampicin activates AMPK and alleviates oxidative stress in the liver as mediated with Nrf2 signaling. Chem Biol Interact 315:108889. https://doi.org/10.1016/j.cbi.2019.108889

    Article  CAS  PubMed  Google Scholar 

  75. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K et al (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 8:6. https://doi.org/10.3389/fendo.2017.00006

    Article  Google Scholar 

  76. Miralles-Linares F, Puerta-Fernandez S, Bernal-Lopez MR, Tinahones FJ, Andrade RJ, Gomez-Huelgas R (2012) Metformin-induced hepatotoxicity. Diabetes Care 35:e21. https://doi.org/10.2337/dc11-2306

    Article  PubMed  PubMed Central  Google Scholar 

  77. Nanjan MJ, Mohammed M, Prashantha Kumar BR, Chandrasekar MJN (2018) Thiazolidinediones as antidiabetic agents: a critical review. Bioorg Chem 77:548–567. https://doi.org/10.1016/j.bioorg.2018.02.009

    Article  CAS  PubMed  Google Scholar 

  78. Hur KY, Lee MS (2015) New mechanisms of metformin action: focusing on mitochondria and the gut. J Diabetes Investig 6:600–609. https://doi.org/10.1111/jdi.12328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Park J, Joe Y, Ryter SW, Surh YJ, Chung HT (2019) Similarities and distinctions in the effects of metformin and carbon monoxide in immunometabolism. Mol Cells 42:292–300. https://doi.org/10.14348/molcells.2019.0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Song YM, Lee WK, Lee YH, Kang ES, Cha BS, Lee BW (2016) Metformin restores Parkin-mediated mitophagy, suppressed by cytosolic p53. Int J Mol Sci 17:1–14. https://doi.org/10.3390/ijms17010122

    Article  CAS  Google Scholar 

  81. Geng Y, Hernandez Villanueva A, Oun A, Buist-Homan M, Blokzijl H, Faber KN, Dolga A, Moshage H (2020) Protective effect of metformin against palmitate-induced hepatic cell death. Biochim Biophys Acta Mol Basis Dis 1866:165621. https://doi.org/10.1016/j.bbadis.2019.165621

    Article  CAS  PubMed  Google Scholar 

  82. Lee YH, Chung MC, Lin Q, Boelsterli UA (2008) Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2(+/−) mice: two-stage oxidative injury. Toxicol Appl Pharmacol 231:43–51. https://doi.org/10.1016/j.taap.2008.03.025

    Article  CAS  PubMed  Google Scholar 

  83. Bjornsson ES (2017) Hepatotoxicity of statins and other lipid-lowering agents. Liver Int 37:173–178. https://doi.org/10.1111/liv.13308

    Article  PubMed  Google Scholar 

  84. Karahalil B, Hare E, Koc G, Uslu I, Senturk K, Ozkan Y (2017) Hepatotoxicity associated with statins. Arh Hig Rada Toksikol 68:254–260. https://doi.org/10.1515/aiht-2017-68-2994

    Article  CAS  PubMed  Google Scholar 

  85. Mollazadeh H, Atkin SL, Butler AE, Ruscica M, Sirtori CR, Sahebkar A (2018) The effect of statin therapy on endoplasmic reticulum stress. Pharmacol Res 137:150–158. https://doi.org/10.1016/j.phrs.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  86. Bao S, Lin J, Xie M, Wang C, Nie X (2021) Simvastatin affects Nrf2/MAPK signaling pathway and hepatic histological structure change in Gambusia affinis. Chemosphere 269:128725. https://doi.org/10.1016/j.chemosphere.2020.128725

    Article  CAS  PubMed  Google Scholar 

  87. Farag MM, Mohamed MB, Youssef EA (2015) Assessment of hepatic function, oxidant/antioxidant status, and histopathological changes in rats treated with atorvastatin: effect of dose and acute intoxication with acetaminophen. Hum Exp Toxicol 34:828–837. https://doi.org/10.1177/0960327114559991

    Article  CAS  PubMed  Google Scholar 

  88. Guixe-Muntet S, de Mesquita FC, Vila S, Hernandez-Gea V, Peralta C, Garcia-Pagan JC, Bosch J, Gracia-Sancho J (2017) Cross-talk between autophagy and KLF2 determines endothelial cell phenotype and microvascular function in acute liver injury. J Hepatol 66:86–94. https://doi.org/10.1016/j.jhep.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  89. Andres AM, Hernandez G, Lee P, Huang C, Ratliff EP, Sin J, Thornton CA, Damasco MV, Gottlieb RA (2014) Mitophagy is required for acute cardioprotection by simvastatin. Antioxid Redox Signal 21:1960–1973. https://doi.org/10.1089/ars.2013.5416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ashrafizadeh M, Ahmadi Z, Farkhondeh T, Samarghandian S (2020) Modulatory effects of statins on the autophagy: a therapeutic perspective. J Cell Physiol 235:3157–3168. https://doi.org/10.1002/jcp.29227

    Article  CAS  PubMed  Google Scholar 

  91. Schirrmacher V (2019) From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 54:407–419. https://doi.org/10.3892/ijo.2018.4661

    Article  CAS  PubMed  Google Scholar 

  92. Guo X, Li W, Hu J, Zhu EC, Su Q (2020) Hepatotoxicity in patients with solid tumors treated with PD-1/PD-L1 inhibitors alone, PD-1/PD-L1 inhibitors plus chemotherapy, or chemotherapy alone: systematic review and meta-analysis. Eur J Clin Pharmacol 76:1345–1354. https://doi.org/10.1007/s00228-020-02903-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song J, Zhao W, Lu C, Shao X (2019) LATS2 overexpression attenuates the therapeutic resistance of liver cancer HepG2 cells to sorafenib-mediated death via inhibiting the AMPK-Mfn2 signaling pathway. Cancer Cell Int 19:60. https://doi.org/10.1186/s12935-019-0778-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dirks-Naylor AJ, Kouzi SA, Bero JD, Phan DT, Taylor HN, Whitt SD, Mabolo R (2014) Doxorubicin alters the mitochondrial dynamics machinery and mitophagy in the liver of treated animals. Fundam Clin Pharmacol 28:633–642. https://doi.org/10.1111/fcp.12073

    Article  CAS  PubMed  Google Scholar 

  95. Yan C, Li TS (2018) Dual role of mitophagy in cancer drug resistance. Anticancer Res 38:617–621. https://doi.org/10.21873/anticanres.12266

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding for this study was provided by National Nature Science Foundation of China (Grant No. 81100281), Hubei Provincial Natural Science Foundation of China (Grant No. 2020CFB371), and Medical and Health Research Project from Yichang Science and Technology Bureau (Grant No. A15301-35).

Author information

Authors and Affiliations

Authors

Contributions

WH, XY, JZ, QY and CZ contributed to the writing, review, and editing of the manuscript. JZ made the figures and tables. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xiang Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Yuan, Q., Zhou, C. et al. Mitochondrial stress response in drug-induced liver injury. Mol Biol Rep 48, 6949–6958 (2021). https://doi.org/10.1007/s11033-021-06674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06674-6

Keywords

Navigation