Skip to main content

Advertisement

Log in

Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The present study deals with the synthesis of selenium nanoparticles (SeNPs) using Nilgirianthus ciliatus leaf extracts, characterized by UV–Vis spectrophotometer, XRD, FTIR, FE-SEM, HR-TEM, DLS, and zeta potential analysis. The antimicrobial activity against Staphylococcus aureus (MTCC96), Escherichia coli (MTCC443), and Salmonella typhi (MTCC98) showed the remarkable inhibitory effect at 25 µl/mL concentration level. Furthermore, the characterized SeNPs showed a great insecticidal activity against Aedes aegypti in the early larval stages with the median Lethal Concentration (LC50) of 0.92 mg/L. Histopathological observations of the SeNPs treated midgut and caeca regions of Ae. aegypti 4th instar larvae showed damaged epithelial layer and fragmented peritrophic membrane. In order to provide a mechanistic approach for further studies, molecular docking studies using Auto Dock Vina were performed with compounds of N. ciliatus within the active site of AeSCP2. Overall, the N. ciliates leaf-mediated biogenic SeNPs was promisingly evidenced to have potential larvicidal and food pathogenic bactericidal activity in an eco-friendly approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Benelli G, Mehlhorn H (2016) Declining malaria, rising of dengue and Zika virus: insights for mosquito vector control. Parasitol Res 115:1747–1754. https://doi.org/10.1007/s00436-016-4971-z

    Article  PubMed  Google Scholar 

  2. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, MaheshKumar P, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529. https://doi.org/10.1007/s00436-015-4336-z

    Article  PubMed  Google Scholar 

  3. Karin L, Carina Z, Katja S, Adelheid O, Dominik B, Katharina B, Melanie W, Beate P, Hans PF, Franz R (2015) Mosquitoes (Diptera: Culicidae) and their relevance as disease vectors in the city of Vienna Austria. Parasitol Res 114:707–713. https://doi.org/10.1007/s00436-014-4237-6

    Article  Google Scholar 

  4. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265. https://doi.org/10.1007/s00436-011-2480-7

    Article  PubMed  Google Scholar 

  5. Murugan K, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Hwang JS, Lan W, Dinesh D, Suresh U, Roni M, Higuchi A, Nicoletti M, Benelli G (2016) Eco-friendly drugs from the marine environment: sponge weed-synthesized silver nanoparticles are highly effective on Plasmodium falciparum and its vector Anopheles stephensi, with little non-target effects on predatory copepods. Environ Sci Pollut Res 23:16671–16685. https://doi.org/10.1007/s11356-016-6832-9

    Article  CAS  Google Scholar 

  6. WHO, 2017, Dengue and dengue haemorrhagic fever - fact sheet no 117, Available at, http://www.who.int/mediacentre/factsheets/fs117/en/.2017. Accessed 7 Jan

  7. Tome HV, Pascini TV, Dangelo RA, Guedes RN, Martins GF (2014) Survival and swimming behavior of insecticide-exposed larvae and pupae of the yellow fever mosquito Aedesaegypti. Parasit Vectors 7:1–9. https://doi.org/10.1186/1756-3305-7-195

    Article  CAS  Google Scholar 

  8. P.V. Gonzalez, L. Harburguer, P.A. Gonzalez-Audino, H.M. Masuh, The use of Aedesaegypti larvae attractants to enhance the effectiveness of larvicides, Parasitol Res 115 (2016) 2185–2190. https://doi.org/10.1007/s00436-016-4960-2

  9. B. Morejon, F. Pilaquinga, F. Domenech, D. Ganchala, A. Debut, M. Neira (2018) Larvicidal activity of silver nanoparticles synthesized using extracts of Ambrosia arborescens (Asteraceae) to Control AedesaegyptiL. (Diptera: Culicidae), J Nanotechnol 2018. https://doi.org/10.1155/2018/6917938

  10. P.B. Patil, K.J.Gorman, S.K. Dasgupta, K.V. Seshu Reddy, S.R. Barwale U.B. Zehr (2018) Self-limiting OX513A Aedesaegyptidemonstrate full susceptibility to currently used insecticidal chemistries as compared to Indian wild-type Aedesaegypti, Hindawi Psyche 2018. https://doi.org/10.1155/2018/781464

  11. Govindarajan M, Benelli G (2016) α-Humulene and β-elemene from Syzygiumzeylanicum(Myrtaceae) essential oil: highly effective and eco-friendly larvicidesagainsAnophelessubpictus, Aedesalbopictus, and Culextritaeniorhynchus(Diptera:Culicidae). Parasitol Res 115:2771–2778. https://doi.org/10.1007/s00436-016-5025-2

    Article  PubMed  Google Scholar 

  12. Mishra R, Bohra A, Kamaal N, Kumar K, Gandhi K, Sujayan GK, Saabale PR, SatheeshNaik SJ, Sarma BK, Dharmendra K, Mishra M, Srivastava DK, Narendra PS (2018) Utilization of biopesticides as sustainable solutions for management of pests in legume crops: achievements and prospects. Egypt J Biol Pest Co 28:1–11. https://doi.org/10.1186/s41938-017-0004-1

    Article  Google Scholar 

  13. Soni N, Prakash S (2014) Silver nanoparticles: a possibility for malarial and filarial vector control technology. Parasito Res 113(11):4015–4022. https://doi.org/10.1007/s00436-014-4069-4

    Article  Google Scholar 

  14. Amita H, Snehali D, Naba Kumar M (2016) Mosquito larvicidal activity of cadmium nanoparticles synthesized from petal extracts of marigold (Tagetes sp.) and rose (Rosa sp.) flower. J Parasit. 40(4):1519–1527. https://doi.org/10.1007/s12639-015-0719-4

    Article  Google Scholar 

  15. M. Yazhiniprabha, B. Vaseeharan, In vitro and in vivo toxicity assessment of selenium nanoparticles with significant larvicidal and bacteriostatic properties. Mater Sci Eng C 109763 (2019). https://doi.org/10.1016/j.msec.2019.109763.

  16. Li T, Lan Q, Liu N (2009) Larvicidal activity of mosquito sterol carrier protein-2 inhibitors to the insecticide-resistant mosquito Culexquinquefasciatus(Diptera: Culicidae). J Med Entomol 46:1430–1435. https://doi.org/10.1603/033.046.0626

    Article  CAS  PubMed  Google Scholar 

  17. H. Ma, Y. Ma, X. Liu, D. H. Dyer, P. Xu, K. Liu, Q. Lan, H. Hong (2015) JianxinPeng R. Peng, NMR structure and function of Helicoverpaarmigerasterol carrier protein-2, an important insecticidal target from the cotton bollworm. Sci Rep 5:1–14. https://doi.org/10.1038/srep18186.

  18. Dyer DH, Vyazunova I, Lorch JM, Forest KT, Lan Q (2009) Characterization of the yellow fever mosquito sterol carrier protein-2 like 3 gene and ligand-bound protein structure. Mol Cell Biochem 326:67–77. https://doi.org/10.1007/s11010-008-0007-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radek JT, Dyer DH, Lan Q (2010) Effects of mutations in Aedesaegyptisterol carrier protein-2 on the biological function of the protein. Biochemistry 49:7532–7541. https://doi.org/10.1021/bi902026v

    Article  CAS  PubMed  Google Scholar 

  20. Kim MS, Wessely V, Lan Q (2005) Identification of mosquito sterol carrier protein-2 inhibitors. J Lipid Res 46:650–657. https://doi.org/10.1194/jlr.M400389-JLR200

    Article  CAS  PubMed  Google Scholar 

  21. Kumar RB, Shanmugapriya B, Thiyagesan K, Kumar SR, Xavier SM (2010) A search for mosquito larvicidal compounds by blocking the sterol carrying protein, AeSCP-2, through computational screening and docking strategies. Pharmacognosy Res 2:247–253. https://doi.org/10.4103/0974-8490.69126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singarapu KK, Ahuja A, Potula PR, Ummanni R (2016) Solution nuclear magnetic resonance studies of sterol carrier protein 2 like 2 (SCP2L2) reveal the insecticide specific structural characteristics of SCP2 proteins in Aedesaegyptimosquitoes. Biochemistry 55:4919–4927. https://doi.org/10.1021/acs.biochem.6b00322

    Article  CAS  PubMed  Google Scholar 

  23. Bintsis T (2017) Foodborne pathogens. AIMS Microbiol 3:529–563. https://doi.org/10.3934/microbiol.2017.3.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang S, Xiuguo H, Ying Y, Han Q, Zhifeng Y, Yang L, Jing W, Tingting T (2018) Bacteria-Targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection. ACS Appl Mater Interfaces 10:14299–14311. https://doi.org/10.1021/acsami.7b15678

    Article  CAS  PubMed  Google Scholar 

  25. Joseph F, Thomas R, Webster J (2012) Cytotoxicity of selenium nanoparticles in rat dermal fibroblasts. Int J Nanomedicine 7:3907–3914. https://doi.org/10.2147/IJN.S33767

    Article  CAS  Google Scholar 

  26. WHO, 2014, Initiative to estimate the global burden of foodborne diseases: information and publications. Geneva: World Health Organ 2014.

  27. N. Amajoud, A. Leclercq, M. Soriano, H. Bracq-Dieye, M. El Maadoudi, N.S. Senhaji (2018) Prevalence of Listeria spp. and characterization of Listeria monocytogenes isolated from food products in Tetouan Morocco. Food Control 84:436–441. https://doi.org/10.1016/j.foodcont.2017.08.023.

  28. Tsiraki MI, Yehia HM, Elobeid T, Osaili T, Sakkas H, Savvaidis IN (2018) Viability of and Escherichia coli O157:H7 and Listeria monocytogenesin a delicatessen appetizer (yogurt-based) salad as affected by citrus extract (Citrox©) and storage. Food Microbiol 69:11–17. https://doi.org/10.1016/j.fm.2017.07.014

    Article  CAS  PubMed  Google Scholar 

  29. C. Shi, X. Zhang, X. Zhao, R. Meng, Z. Liu, X. Chen, Na, G. Synergistic interactions of nisin in combination with cinnamaldehyde against Staphylococcus aureus in pasteurized milk. Food Control 71, (2017) 10–16. https://doi.org/10.1016/j.foodcont. 2016.06.020

  30. A.A. Alfuraydi, S.M. Devanesan, M. Al-Ansari, M.S. AlSalhi, A.J. Ranjitsingh, Eco-friendly green synthesis of silver nanoparticles from the sesame oil cake and its potential anticancerandantimicrobialactivities. J Photochem Photobiol B 192 (2019)83–89. https://doi.org/10.1016/j.jphotobiol.2019.01.011

  31. Oktar FN, Yetmez M, Ficai D, Ficai A, Dumitru F, Pica A (2015) Molecular mechanism and targets of the antimicrobial activity of metal nanoparticles. Curr Top Med Chem 15:1583–1588. https://doi.org/10.2174/1568026615666150414141601

    Article  CAS  PubMed  Google Scholar 

  32. Iavicoli I, Leso V, Schulte PA (2016) Biomarkers of susceptibility: state of the art and implications for occupational exposure to engineered nanomaterials. Toxicol Appl Pharmacol 299:112–124. https://doi.org/10.1016/j.taap.2015.12.018

    Article  CAS  PubMed  Google Scholar 

  33. Shakibaie M, Khorramizadeh MR, Faramarzi MR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotech Appl Bioche 56:7–15. https://doi.org/10.1042/BA20100042

    Article  CAS  Google Scholar 

  34. Xiao N, Lou MD, Lu YT, Yang LL, Liu Q, Liu B (2017) Ginsenoside Rg5 attenuates hepatic glucagon response via suppression of succinate-associated HIF-1α induction in HFD-fedmice. Diabetologia 60:1084–1093. https://doi.org/10.1007/s00125-017-4238-y

    Article  CAS  PubMed  Google Scholar 

  35. C. Vetrivel, K. Durairaj, D. Kalaimurugan, M. Viji, E. Murugesh, L. Wen Chao, B. Balamuralikrishnan, A. Maruthupandia Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci Rep 11 (2021) 1032. https://doi.org/10.1038/s41598-020-80327-9

  36. Meenambigai K, Kokila R, Premkumar M, Pazhanivel T, Sivashanmugan K, Nareshkumar A (2020) Leaf extract of Dillenia indica as a source of selenium nanoparticles with larvicidal and antimicrobial potential toward vector mosquitoes and pathogenic microbes. Coatings 10:626. https://doi.org/10.3390/coatings10070626

    Article  CAS  Google Scholar 

  37. Venkatesan A, Sujatha V (2019) Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 9:105–116. https://doi.org/10.1007/s12668-018-0566-8

    Article  Google Scholar 

  38. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culexquinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499. https://doi.org/10.1007/s00436-012-3158-5

    Article  PubMed  Google Scholar 

  39. Rameshkumar R, Largia MJV, Satish L, Shilpha J, Ramesh M (2017) In vitro mass propagation and conservation of Nilgirianthusciliatus through nodal explants: a globally endangered, high trade medicinal plant of Western Ghats. Plant Biosys Int J Plant Biol 151:204–211. https://doi.org/10.1080/11263504.2016.1149120

    Article  Google Scholar 

  40. George M, Joseph L, Sony S (2017) Evaluation of analgesic activity of ethanolic extract of Strobilanthes ciliates Nees. J Pharm Innov 6:326–328

    CAS  Google Scholar 

  41. Neethu V, SheronSheeba J, Jasmine TS, Divya GS (2014) Study of phytochemical and antimicrobial potential of the leaves of Nilgirianthusciliatus Linn. Int J Appl Biol Pharm 5:150–152

    Google Scholar 

  42. Reneela P, Shubashini K (2010) Triterpenoid and sterol constituents of Strobilanthes ciliatusNees. Indian J Nat Prod 6:35–38

    CAS  Google Scholar 

  43. D.J. Tan, H. Dvinge, A. Christoforou, P. Bertone, A. Martinez Arias, K.S. Lilley, Mapping organelle proteins and protein complexes in Drosophilamelanogaster. J Proteome Res 8 (2009) 2667–2678.https://doi.org/10.1021/pr800866n.

  44. Ramasubramanian T, Ramaraju K, Pandey SK (2015) DNA barcodes of sugarcane Aleyrodids. Int Sugar J 117:206–211

    CAS  Google Scholar 

  45. Fang C, Zhong H, Lin Y, Chen B, Han M, Ren H, Lu H, Jacob M, Luber M, Xia M, Li W, Stein S, Xu X, Zhang W, Drmanac R, Wang J, Yang H, Hammarstrom L, Aleksandar D, Kostic K, Li J (2018) Assessment of the cPAS-basedBGISEQ-500platform for meta genomic sequencing. Giga Sci 7:1–8. https://doi.org/10.1093/gigascience/gix133

    Article  CAS  Google Scholar 

  46. WHO, (2005) Guidelines for laboratory and field testing of mosquito larvicides.Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO Geneva WHO/CDS/WHOPES/GCDPP/1.3. 2005.

  47. Roberts N (1998) Holocene book reviews on second editions. The Holocene London 8:751–754. https://doi.org/10.1191/095968398669623867

    Article  Google Scholar 

  48. Nareshkumar A, Jeyalalitha T, Murugan K, Madhiyazhagan P (2013) Bioefficacy of plant mediated gold nanoparticles and Anthocepholuscadamba on filarial vector, Culexquinquefasciatus(Insecta: Diptera: Culicidae). Parasitol Res 112:1053–1063. https://doi.org/10.1007/s00436-012-3232-z

    Article  Google Scholar 

  49. Azmi W, Sani RK, Banerjee UC (1998) Biodegradation of triphenylmethane dyes. Enzyme Microb Technol 22:185–191. https://doi.org/10.1016/S0141-0229(97)00159-2

    Article  CAS  PubMed  Google Scholar 

  50. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  51. Sahar F (2010) Histopathological effects of Fenugreek (Trigonellafoenumgraceum) extracts on the larvae of the mosquito Culexquinquefasciatus. J Arab Soc Med Res 5:123–130

    Google Scholar 

  52. Fallatah SA, Khater EI (2010) Potential of medicinal plants in mosquito control. J Egypt Soc Parasitol 40:1–26

    PubMed  Google Scholar 

  53. Diao WR, Hu QP, Feng SS, Li WQ, Xu JG (2013) Chemical composition and antibacterial activity of the essential oil from green huajiao (Zanthoxylumschinifolium) against selected foodborne pathogens. J Agric Food Chem. 61:6044–6049. https://doi.org/10.1021/jf4007856

    Article  CAS  PubMed  Google Scholar 

  54. Trott O, Olson AJ (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31:455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S, Cheng J, Gindulyte T, Li AJQ, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE, PubChem in, (2021) new data content and improved web interfaces. Nucleic acids Res 49(2019):D1388–D1395. https://doi.org/10.1093/nar/gkaa971

    Article  CAS  PubMed  Google Scholar 

  56. T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996) 490–519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AID-JCC1>3.0.CO;2-P.

  57. Dyer DH, Lovell S, Thoden JB, Holden HM, Rayment I, Lan Q (2003) The structural determination of an insect sterol carrier protein-2 with a ligand-bound C16 fatty acid at 1.35-Å resolution. J Biol Chem 278:39085–39091. https://doi.org/10.1074/jbc.m306214200

    Article  CAS  PubMed  Google Scholar 

  58. Ramamurthy CH, Sampath KS, Arunkumar P, SureshKumar M, Sujatha V, Premkumar K, Thirunavukkarasu C (2013) Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst Eng 36:1131–1139. https://doi.org/10.1007/s00449-012-0867-1

    Article  CAS  PubMed  Google Scholar 

  59. Srinivasan M, Padmaja B, Sudharsan N (2013) Phytochemical identification of Nilgirianthusciliatusby GC-MS analysis and its DNA protective effect in cultured lymphocytes. Asian J Biomed Pharm Sci 3:14–17

    Google Scholar 

  60. Benelli G, Iacono AL, Canale A, Mehlhorn H (2016) Mosquito vectors and the spread of cancer:an over looked connection? Parasitol Res 115:2131–2137. https://doi.org/10.1007/s00436-016-5037-y

    Article  PubMed  Google Scholar 

  61. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopaedic infections. J Orthop Res 36:22–32. https://doi.org/10.1002/jor.23656

    Article  PubMed  Google Scholar 

  62. Mishra RR, Prajapati S, Das J, Dangar TK, Das N, Thatoi H (2018) Reduction of selenite to red elemental selenium by moderately halo tolerantBacillus megateriumstrains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84:1231–1237. https://doi.org/10.1016/j.chemosphere.2011.05.025

    Article  CAS  Google Scholar 

  63. Yang LB, Shen YH, Xie AJ, Liang JJ, Zhang BC (2008) Synthesis of Se nanoparticles by using TSA ion and its photocatalytic application for decolorization of congo red under UV irradiation. Mater Res Bull 43:572–582. https://doi.org/10.1016/j.materresbull.2007.04.012

    Article  CAS  Google Scholar 

  64. Anu K, Singaravelu G, Murugan K, Benelli G (2017) Green-synthesis of selenium nanoparticles using garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on vero cells. J Clust Sci 28:551–563. https://doi.org/10.1007/s10876-016-1123-7

    Article  CAS  Google Scholar 

  65. Kokila K, Elavarasan N, Sujatha V (2017) Diospyrosmontana leaf extract-mediated synthesis of selenium nanoparticles and its biological applications. New J Chem 41:7481–7490. https://doi.org/10.1039/C7NJ01124E

    Article  CAS  Google Scholar 

  66. Gunti L, Dass RS, Kalagatur NK (2019) Phytofabrication of selenium nanoparticles from Emblicaofficinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front Microbiol 10:1–17. https://doi.org/10.3389/fmicb.2019.00931

    Article  Google Scholar 

  67. Movasaghi Z, Rehman DI (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl Spectrosc Rev 43:134–179. https://doi.org/10.1080/05704920701829043

    Article  CAS  Google Scholar 

  68. J. Vyas S. Rana, Synthesis of selenium nanoparticles using Allium sativum extract and analysis of their antimicrobial property against gram positive bacteria. J Pharm Innov 7 (2018) 262–266.https://doi.org/10.21276/ijpbs.2019.9.1.46.

  69. B. Fardsadegh, H. Jafarizadeh- Malmiri, Aloe vera leaf extract mediated greensynthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains, Green Process. Synth.8 (2019) 399–407. https://doi.org/10.1515/gps-2019-0007.

  70. Mellinas C, Jimenez A, Maria D, Garrigos C (2019) Microwave-assisted green synthesis and antioxidant activity of selenium nanoparticles using Theobroma cacao L bean shell extract. Molecules 24:40–48. https://doi.org/10.3390/molecules24224048

    Article  CAS  Google Scholar 

  71. Anushia C, Sampathkumar P, Ramkumar L (2009) Antibacterial and antioxidant activities in Cassia auriculata. Glob J Pharmacol 3:127–130

    Google Scholar 

  72. Vennila K, Chitra L, Balagurunathan R, Palvannan T (2018) Comparison of biological activities of selenium and silver nanoparticles attached with bioactive phytoconstituents: green synthesized using Spermacoce hispida extract. Adv Nat Sci Nanosci Nanotechnol 9:015005. https://doi.org/10.1088/2043-6254/aa9f4d

    Article  CAS  Google Scholar 

  73. P. Sribenjarat, N. Jirakanjanakit, K. Jirasripongpun, Selenium nanoparticles biosynthesized by garlic extract as antimicrobial agent. Sci Eng Health Stud 14 (2020) 22–31. https://doi.org/10.14456/sehs.2020.3

  74. R.S.R. Radhika, S. Gayathri, Extracelluar biosynthesis of selenium nanoparticles using some species of Lactobacillus. Indian J Geo-Mar Sci 44 (2015) 766–775. http:// hdl.handle.net/123456789/34805.

  75. Beheshti N, Soflaei S, Shakibaie M, Yazdi MH, Ghaffarifar F, Dalimi A (2013) Efficacy of biogenic selenium nanoparticles against Leishmania major: in vitro and in vivo studies. J Trace Elem Med Biol 27:203–207. https://doi.org/10.1016/j.jtemb.2012.11.002

    Article  CAS  PubMed  Google Scholar 

  76. M. Shakibaie, A.R. Shahverdi, M.A. Faramarzi, G.R. Hassanzadeh, H.R. Rahimi, O. Sabzevari, Acute and subacute toxicity of novel biogenic selenium nanoparticles in mice. Pharm Biol 51 (2013) 58–63.https://doi.org/10.3109/13880209.2012.710241

  77. Muthukumaran U, Govindarajan M, Rajeswary M (2015) Green synthesis of silver nanoparticles from CassiaroxBurghii: a most potent power for mosquito control. Parasitol Res 114:4385–4395. https://doi.org/10.1007/s00436-015-4677-7

    Article  PubMed  Google Scholar 

  78. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nature Mater 3:482–488. https://doi.org/10.1038/nmat1152

    Article  CAS  Google Scholar 

  79. Sowndarya P, Ramkumar G, Shivakumar MS (2017) Green synthesis of selenium nanoparticles conjugated Clausenadentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif Cells Nanomed Biotechnol. 45:1490–1495. https://doi.org/10.1080/21691401.2016.1252383

    Article  CAS  PubMed  Google Scholar 

  80. Saura SC, Hayes AW (2017) Toxicity of nanomaterials found in human environment: a literature review. Toxicol Res Appl 1:20. https://doi.org/10.1177/2397847317726352

    Article  Google Scholar 

  81. Krebs KC, Lan Q (2003) Isolation and expression of a sterol carrier protein-2 gene from the yellow fever mosquito, Aedesaegypti. Insect Mol Biol. 12:51–60. https://doi.org/10.1046/j.1365-2583.2003.00386.x

    Article  CAS  PubMed  Google Scholar 

  82. Lan Q, Massey RJ (2004) Subcellular localization of mosquito sterol carrier protein-2 and sterol carrier protein-x. J Lipid Res 45:1468–1474. https://doi.org/10.1194/jlr.M400003-JLR200

    Article  CAS  PubMed  Google Scholar 

  83. Lan Q, Wessely V (2004) Expression of a sterol carrier protein-x gene in the yellow fever mosquito. Aedesaegypti. Insect. Mol Biol 13:519–529. https://doi.org/10.1111/j.0962-1075.2004.00510.x

    Article  CAS  Google Scholar 

  84. Vyazunova I, Wessley V, Kim M, Lan Q (2007) Identification of two sterol carrier protein-2 like genes in the yellow fever mosquito, Aedesaegypti. Insect Mol Biol 16:305–314. https://doi.org/10.1111/j.1365-2583.2007.00729.x

    Article  CAS  PubMed  Google Scholar 

  85. Hariharan H, Al-Dhabi NA, Karuppiah P, Rajaram SK (2012) Microbial synthesis of selenium nanocomposite using Saccharomyces cerevisiae and its antimicrobial activity against pathogens causing nosocomial infection. Chalcogenide Lett 9:509–515

    CAS  Google Scholar 

  86. F.J. Ramos, S.C. Chen, M.G. Garelick, D.F. Dai, C.Y. Liao, K.H. Schreiber, V.L. MacKay, E.H. An, R. Strong, W.C. Ladiges, P.S. Rabinovitch, Rapamycin reverses elevated mTORC1 signaling in lamin A/C–deficient mice, rescues cardiac and skeletal muscle function, and extends survival. Sci Transl Med 4(2012)144ra103–144ra103. https://doi.org/10.1126/scitranslmed.3003802

  87. Chudobova D, Simona C, Ruttkay B, Angel M, Katerina R, Kopel P, Jiri N, Sona G, Kynicky J, Vojtech K (2014) Comparison of the effects of silver phosphate and selenium nanoparticles on Staphylococcus aureus growth reveals potential for selenium particles to prevent infection. FEMS Microbiol Lett 35:195–201. https://doi.org/10.1111/1574-6968.12353

    Article  CAS  Google Scholar 

  88. Nakayama S, Ojanguren AF, Fuiman LA (2011) Process-based approach reveals directional effects of environmental factors on movement between habitats. J Anim Ecol 80:1299–1304. https://doi.org/10.1111/j.1365-2656.2011.01859.x

    Article  PubMed  Google Scholar 

  89. Carson L, Bandara S, Joseph M, Green T, Grady T, Osuji G, Weerasooriya A, Ampim P, Woldesenbet S (2020) Green synthesis of silver nanoparticles with antimicrobial properties using Phyladulcis plant extract. Foodborne Pathog Dis 17:504–511. https://doi.org/10.1089/fpd.2019.2714

    Article  CAS  PubMed  Google Scholar 

  90. Khiralla GM, El-Deeb BA (2015) Antimicrobial and antibiofilm effects of selenium nanoparticles on some foodborne pathogens. LWT Food Sci Tech 63:1001–1007. https://doi.org/10.1016/j.lwt.2015.03.086

    Article  CAS  Google Scholar 

  91. Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S (2017) Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles. J Mater Sci: Mater Electron 28:11420–11429. https://doi.org/10.1007/s10854-017-6937-z

    Article  CAS  Google Scholar 

  92. Hosseinkhani PZ, Imani AM, Rezayi S, RezaeiZarchi MS (2011) Determining the antibacterial effect of ZnO nanoparticle against the pathogenic bacterium higelladysenteriae(type1). Int J Nano Dim 1:279–285. https://doi.org/10.7508/IJND.2010.04.00

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge and thank Periyar University, Salem, Tamil Nadu, for providing all required laboratory facilities to conduct this research work.

Funding

Authors are thankful to the University Grants Commission (UGC), New Delhi, India, for the award of Rajiv Gandhi National Fellowship with financial support (Ref No: F1-17.1/ 2015–16/ RGNF2015-17 –SC-TAM-10313) to carry out this research work.

Author information

Authors and Affiliations

Authors

Contributions

Krishnan Meenambigai: data curation, methodology, writing – original draft; Ranganathan Kokila: methodology, formal analysis; Kandasamy Chandhirasekar: data curation, formal analysis; Ayyavu Thendralmanikandan: methodology; Durairaj Kaliannan: data curation, formal analysis; Kalibulla Syed Ibrahim: formal analysis, resources, bioinformatics; Shobana Kumar: data curation, formal analysis; Wenchao Liu: data curation, validation, writing – review and editing; Balamuralikrishnan Balasubramanian: conceptualization, writing – review and editing; Arjunan Nareshkumar: conceptualization, supervision, validation, visualization, writing – review and editing.

Corresponding authors

Correspondence to Balamuralikrishnan Balasubramanian or Arjunan Nareshkumar.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Balamuralikrishnan Balasubramanian is equally considered as first author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meenambigai, K., Kokila, R., Chandhirasekar, K. et al. Green Synthesis of Selenium Nanoparticles Mediated by Nilgirianthus ciliates Leaf Extracts for Antimicrobial Activity on Foodborne Pathogenic Microbes and Pesticidal Activity Against Aedes aegypti with Molecular Docking. Biol Trace Elem Res 200, 2948–2962 (2022). https://doi.org/10.1007/s12011-021-02868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-021-02868-y

Keywords

Navigation