Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Review Article

Conversion of Limonene over Heterogeneous Catalysis: An Overview

Author(s): Ravi Tomar*, Swati Jain, Purnima Yadav, Tanima Bajaj, Fatemeh Mohajer and Ghodsi Mohammadi Ziarani*

Volume 19, Issue 3, 2022

Published on: 06 December, 2021

Page: [414 - 425] Pages: 12

DOI: 10.2174/1570179418666210824101837

Price: $65

Abstract

The natural terpene limonene is widely found in nature. The (R)-limonene (the most abundant enantiomer) is present in the essential oils of lemon, orange, and other citrus fruits, while the (S)- limonene is found in peppermint and the racemate in turpentine oil. Limonene is a low-cost, low toxicity biodegradable terpene present in agricultural wastes derived from citrus peels. The products obtained from the conversion of limonene are valuable compounds widely used as additives for food, cosmetics, or pharmaceuticals. The conversion of limonene to produce different products has been the subject of intense research, mainly with the objective of improving catalytic systems. This review focused on the application of heterogeneous catalysts in the catalytic conversion of limonene.

Keywords: Limonene, oxidation, carvone, heterogeneous catalysis, epoxidation, low toxicity biodegradable.

Graphical Abstract
[1]
Sun, J. D-Limonene: Safety and clinical applications. Altern. Med. Rev., 2007, 12(3), 259-264.
[PMID: 18072821]
[2]
Ravichandran, C.; Badgujar, P.C.; Gundev, P.; Upadhyay, A. Review of toxicological assessment of d-limonene, a food and cosmetics additive. Food Chem. Toxicol., 2018, 120, 668-680.
[http://dx.doi.org/10.1016/j.fct.2018.07.052] [PMID: 30075315 ]
[3]
Zahi, M.R.; Liang, H.; Yuan, Q. Improving the antimicrobial activity of D -limonene using a novel organogel-based nanoemulsion. Food Control, 2015, 50, e229-e229.
[http://dx.doi.org/10.1016/j.foodcont.2014.10.001]
[4]
Wattenberg, L.W. Inhibition of carcinogenesis by minor dietary constituents. Cancer Res., 1992, 52(7)(Suppl.), 2085s-2091s.
[PMID: 1544145]
[5]
Gould, M.N. Cancer chemoprevention and therapy by monoterpenes. Environ. Health Perspect., 1997, 105(Suppl. 4), 977-979.
[PMID: 9255590]
[6]
Gould, M.N.; Moore, C.J.; Zhang, R.; Wang, B.; Kennan, W.S.; Haag, J.D. Limonene chemoprevention of mammary carcinoma induction following direct in situ transfer of v-Ha-ras. Cancer Res., 1994, 54(13), 3540-3543.
[PMID: 8012978]
[7]
Gonçalves, J.A.; Bueno, A.C.; Gusevskaya, E.V. Palladium-catalyzed oxidation of monoterpenes: Highly selective syntheses of allylic ethers from limonene. J. Mol. Catal. Chem., 2006, 252(1–2), 5-11.
[http://dx.doi.org/10.1016/j.molcata.2006.02.021]
[8]
Modi, C.K.; Chudasama, J.A.; Nakum, H.D.; Parmar, D.K.; Patel, A.L. Catalytic oxidation of limonene over zeolite-y entrapped oxovanadium (iv) complexes as heterogeneous catalysts. J. Mol. Catal. Chem., 2014, 395, 151-161.
[http://dx.doi.org/10.1016/j.molcata.2014.08.022]
[9]
Wilson, C.W.; Shaw, P.E. (+)- Linionene oxidation with selenium dioxide-hydrogen peroxide. J. Org. Chem., 1973, 38(9), 1684-1687.
[http://dx.doi.org/10.1021/jo00949a014]
[10]
Vaschetti, V.M.; Eimer, G.A.; Cánepa, A.L.; Casuscelli, S.G. Catalytic Performance of V-MCM-41 nanocomposites in liquid phase limonene oxidation: vanadium leaching mitigation. Microporous Mesoporous Mater., 2021, 311, 1068.
[http://dx.doi.org/10.1016/j.micromeso.2020.110678]
[11]
Vaschetti, V.M.; Cánepa, A.L.; Barrera, D.; Sapag, K.; Eimer, G.A.; Casuscelli, S.G. Limonene Oxyfunctionalization over Cu-Modified Silicates Employing Hydrogen Peroxide and t-Butyl Hydroperoxide: Reaction pathway analysis. Mol. Catal., 2020, 481, 1.
[http://dx.doi.org/10.1016/j.micromeso.2020.110678]
[12]
Kollár, L.; Bakos, J.; Heil, B.; Sándor, P.; Szalontai, G. Hydroformylation of Chiral Terpenes with PtCl(SnCl3)-(Bis-Phosphine) as Catalyst. J. Organomet. Chem., 1990, 385(1), 147-152.
[http://dx.doi.org/10.1016/0022-328X(90)87153-5]
[13]
Tomar, R.; Singh, N.; Kumar, N.; Tomar, V.; Chandra, R. Base-Free Suzuki- Miyaura Coupling Reaction Using Palladium (II) Supported Catalyst in Water. Catal. Lett., 2019, 149, 1589-1594.
[http://dx.doi.org/10.1007/s10562-019-02723-9]
[14]
Rathee, G.; Awasthi, A.; Sood, D.; Tomar, R.; Tomar, V.; Chandra, R. A new biocompatible ternary Layered Double Hydroxide Adsorbent for ultrafast removal of anionic organic dyes. Sci. Rep., 2019, 9(1), 16225.
[http://dx.doi.org/10.1038/s41598-019-52849-4] [PMID: 31700113]
[15]
Tomar, R.; Singh, N.; Rathee, G.; Kumar, N.; Tomar, V.; Chandra, R. Synthesis and characterization of hybrid Mg(OH)2 and CeCO3OH composite with improved activity towards henry reaction. Asian J. Org. Chem., 2017, 6(12), 1728-1732.
[http://dx.doi.org/10.1002/ajoc.201700485]
[16]
Arya, K.; Tomar, R.; Rawat, D.S. Greener synthesis and photo-antiproliferative activity of novel fluorinated benzothiazolo[2, 3-b]quinazolines. Med. Chem. Res., 2014, 23(2), 896-904.
[http://dx.doi.org/10.1007/s00044-013-0689-y]
[17]
Tomar, R.; Ebitani, K.; Chandra, R. Hydrotalcite-supported ceria nanoparticles as a heterogeneous catalyst for one-pot synthesis of imines under atmospheric air. ChemistrySelect, 2019, 4(12), 3577-3581.
[http://dx.doi.org/10.1002/slct.201900750]
[18]
Nitti, A.; Osw, P.; Calcagno, G.; Botta, C.; Etkind, S.I.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. One-Pot regiodirected annulations for the rapid synthesis of π-extended oligomers. Org. Lett., 2020, 22(8), 3263-3267.
[http://dx.doi.org/10.1021/acs.orglett.0c01043] [PMID: 32255355 ]
[19]
Pasini, D.; Klopp, J.M.; Fréchet, J.M.J. Design, synthesis, and characterization of carbon-rich cyclopolymers for 193 Nm microlithography. Chem. Mater., 2001, 13(11), 4136-4146.
[http://dx.doi.org/10.1021/cm0104304]
[20]
Klopp, J.M.; Pasini, D.; Byers, J.D.; Grant Willson, C.; Fréchet, J.M.J. Microlithographic Assessment of a Novel Family of Transparent and Etch-Resistant Chemically Amplified 193-Nm Resists Based on Cyclopolymers. Chem. Mater., 2001, 13(11), 4147-4153.
[http://dx.doi.org/10.1021/cm010431w]
[21]
Nitti, A.; Debattista, F.; Abbondanza, L.; Bianchi, G.; Po, R.; Pasini, D. Donor–Acceptor Conjugated Copolymers Incorporating Tetrafluorobenzene as the π-Electron Deficient Unit. J. Polym. Sci. A Polym. Chem., 2017, 55(9), 1601-1610.
[http://dx.doi.org/10.1002/pola.28532]
[22]
Nitti, A.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. J. Am. Chem. Soc., 2017, 139(26), 8788-8791.
[http://dx.doi.org/10.1021/jacs.7b03412] [PMID: 28621529]
[23]
De Carvalho, C.C.C.R.; Da Fonseca, M.M.R. Carvone: Why and How Should One Bother to Produce This Terpene. Food Chem., 2006, 95(3), 413-422.
[http://dx.doi.org/10.1016/j.foodchem.2005.01.003]
[24]
Alsanea, S.; Liu, D. BITC and S-Carvone Restrain High-Fat Diet- Induced Obesity and Ameliorate Hepatic Steatosis and Insulin Resistance. Pharm. Res., 2017, 34(11), 2241-2249.
[http://dx.doi.org/10.1007/s11095-017-2230-3] [PMID: 28733781]
[25]
Ceylan, E.; Fung, D.Y.C. Antimicrobial Activity of Spices. J. Rapid Methods Autom. Microbiol., 2004, 12(1), 1-55.
[http://dx.doi.org/10.1111/j.1745-4581.2004.tb00046.x]
[26]
Leitereg, T.J.; Guadagni, D.G.; Harris, J.; Mon, T.R.; Teranishi, R. Chemical and Sensory Data Supporting the Difference between the Odors of the Enantiomeric Carvones. Nature, 1971, 19(4), 785-787.
[http://dx.doi.org/10.1038/230455a0] [PMID: 4932037]
[27]
Shing, T.K.M.; Lo, H.Y.; Mak, T.C.W. Diels-Alder Reaction of R-(-)-Carvone with Isoprene. Tetrahedron, 1999, 55(15), 4643-4648.
[http://dx.doi.org/10.1016/S0040-4020(99)00145-3]
[28]
Shing, T.K.M.; Jiang, Q.; Mak, T.C.W. Total Synthesis of (+) -Quassin from. (+)-Carvone. J. Org. Chem., 1998, 63(7), 2056-2057.
[http://dx.doi.org/10.1021/jo9718962]
[29]
El Firdoussi, L.; Baqqa, A.; Allaoud, S.; Ait Allal, B.; Karim, A.; Castanet, Y.; Mortreux, A. Selective Palladium-Catalysed Functionalization of Limonene: Synthetic and Mechanistic Aspects. J. Mol. Catal. Chem., 1998, 135(1), 11-22.
[http://dx.doi.org/10.1016/S1381-1169(97)00285-9]
[30]
De Fátima Teixeira Gomes, M.; Antunes, O.A.C. Autoxidation of Limonene, α-Pinene and β-Pinene by Dioxygen Catalyzed by Co(OAc)2/Bromide. J. Mol. Catal. Chem., 1997, 121(2–3), 145-155.
[http://dx.doi.org/10.1016/S1381-1169(97)00010-1]
[31]
Kala Raj, N.K.; Puranik, V.G.; Gopinathan, C.; Ramaswamy, A.V. Selective Oxidation of Limonene over Sodium Salt of Cobalt Containing Sandwich-Type Polyoxotungstate [WCo3(H2O) 2{W9CoO34}2]10-. Appl. Catal. A Gen., 2003, 256(1–2), 265-273.
[http://dx.doi.org/10.1016/S0926-860X(03)00407-1]
[32]
Bussi, J.; López, A.; Peña, F.; Timbal, P.; Paz, D.; Lorenzo, D.; Dellacasa, E. Liquid Phase Oxidation of Limonene Catalyzed by Palladium Supported on Hydrotalcites. Appl. Catal. A Gen., 2003, 253(1), 177-189.
[http://dx.doi.org/10.1016/S0926-860X(03)00519-2]
[33]
Oliveira, P.; Ramos, A.M.; Fonseca, I.; Botelho Do Rego, A.; Vital, J. Oxidation of Limonene over Carbon Anchored Transition Metal Schiff Base Complexes: Effect of the Linking Agent. Catal. Today, 2005, 102–103, 67-77.
[http://dx.doi.org/10.1016/j.cattod.2005.02.034]
[34]
Trytek, M.; Fiedurek, J. Biotransformation of d-limonene to carvone by means of glucose oxidase and peroxidase. Acta Microbiol. Pol., 2002, 51(1), 57-62.
[PMID: 12184449]
[35]
Trytek, M.; Fiedurek, J.; Polska, K.; Radzki, S. A Photoexcited Porphyrin System as a Biomimetic Catalyst for D-Limonene Biotransformation. Catal. Lett., 2005, 105(1–2), 119-126.
[http://dx.doi.org/10.1007/s10562-005-8014-0]
[36]
Trytek, M.; Fiedurek, J.; Radzki, S. A novel porphyrin-based photocatalytic system for terpenoids production from (R)-(+)- limonene. Biotechnol. Prog., 2007, 23(1), 131-137.
[http://dx.doi.org/10.1021/bp060282s] [PMID: 17269680]
[37]
Caovilla, M.; Caovilla, A.; Pergher, S.B.C.; Esmelindro, M.C.; Fernandes, C.; Dariva, C.; Bernardo-Gusmão, K.; Oestreicher, E.G.; Antunes, O.A.C. Catalytic Oxidation of Limonene, α-Pinene and β-Pinene by the Complex [FeIII(BPMP)Cl(μ-O)FeIIICl3] Biomimetic to MMO Enzyme. Catal. Today, 2008, 133–135(1–4), 695-698.
[http://dx.doi.org/10.1016/j.cattod.2007.12.107]
[38]
Li, J.; Li, Z.; Zi, G.; Yao, Z.; Luo, Z.; Wang, Y.; Xue, D.; Wang, B.; Wang, J. Synthesis, characterizations and catalytic allylic oxidation of limonene to carvone of cobalt doped mesoporous silica templated by reed leaves. Catal. Commun., 2015, 59, 233-237.
[http://dx.doi.org/10.1016/j.catcom.2014.10.022]
[39]
Godhani, D.R.; Nakum, H.D.; Parmar, D.K.; Mehta, J.P.; Desai, N.C.; Zeolite, Y. Encaged Ru(III) and Fe(III) complexes for oxidation of styrene, cyclohexene, limonene, and α-pinene: An eye-catching impact of h2so4 on product selectivity. J. Mol. A Catal. Chem., 2017, 426(III), 223-237.
[http://dx.doi.org/10.1016/j.molcata.2016.11.020]
[40]
Li, Y.; Yang, Y.; Chen, D.; Luo, Z.; Wang, W.; Ao, Y.; Zhang, L.; Yan, Z.; Wang, J. Liquid-Phase Catalytic Oxidation of Limonene to Carvone over Zif-67(Co). Catalysts, 2019, 9(4)
[http://dx.doi.org/10.3390/catal9040374]
[41]
Becerra, J.A.; González, L.M.; Villa, A.L. A Bio-inspired heterogeneous catalyst for the transformation of limonene from orange peel waste biomass into value-added products. Catal. Today, 2018, 302, 250-260.
[http://dx.doi.org/10.1016/j.cattod.2017.07.012]
[42]
Özçelik, G. Selective Oxidation of Limonene over γ-Al2 O3 Supported Metal Catalyst with H2O2. Int. J. Eng. Manag. Res., 2018, 8(4), 208-212.
[http://dx.doi.org/10.31033/ijemr.v8i4.13243]
[43]
Ardashov, O.V.; Pavlova, A.V.; Il’ina, I.V.; Morozova, E.A.; Korchagina, D.V.; Karpova, E.V.; Volcho, K.P.; Tolstikova, T.G.; Salakhutdinov, N.F. Highly potent activity of (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol in animal models of Parkinson’s disease. J. Med. Chem., 2011, 54(11), 3866-3874.
[http://dx.doi.org/10.1021/jm2001579] [PMID: 21534547]
[44]
Crowell, P.L.; Kennan, W.S.; Haag, J.D.; Ahmad, S.; Vedejs, E.; Gould, M.N. Chemoprevention of mammary carcinogenesis by hydroxylated derivatives of d-limonene. Carcinogenesis, 1992, 13(7), 1261-1264.
[http://dx.doi.org/10.1093/carcin/13.7.1261] [PMID: 1638695]
[45]
Silva, A.D.; Patitucci, M.L.; Bizzo, H.R.; D’Elia, E.; Antunes, O.A.C. Wacker PdCl2-CuCl2 Catalytic Oxidation Process: Oxidation of Limonene. Catal. Commun., 2002, 3(9), 435-440.
[http://dx.doi.org/10.1016/S1566-7367(02)00174-7]
[46]
Lima, L.F.; Corraza, M.L.; Cardozo-Filho, L.; Márquez-Alvarez, H.; Antunes, O.A.C. Oxidation of Limonene Catalyzed by Metal(Salen). Complexes. Braz. J. Chem. Eng., 2006, 23(1), 83-92.
[http://dx.doi.org/10.1590/S0104-66322006000100009]
[47]
Gawarecka, A.; Wróblewska, A. Limonene Oxidation over Ti-MCM-41 and Ti-MWW Catalysts with t-Butyl Hydroperoxide as the Oxidant. React. Kinet. Mech. Catal., 2018, 124(2), 523-543.
[http://dx.doi.org/10.1007/s11144-018-1401-5]
[48]
Wróblewska, A.; Makuch, E.; Młodzik, J.; Koren, Z.C.; Michalkiewicz, B. Oxidation of limonene over molybdenum dioxide-containing nanoporous carbon catalysts as a simple effective method for the utilization of waste orange peels. React. Kinet. Mech. Catal., 2018, 125(2), 843-858.
[http://dx.doi.org/10.1007/s11144-018-1468-z]
[49]
Wróblewska, A.; Makuch, E.; Młodzik, J.; Koren, Z.C.; Michalkiewicz, B. Chemotherapy of pancreatic cancer with the monoterpene perillyl alcohol. Cancer l, 1995, 96, 15-21.
[http://dx.doi.org/10.1007/s11144-018-1468-z]
[50]
Ren, Z.; Gould, M.N. Inhibition of Ubiquinone and Cholesterol Synthesis by the Monoterpene Perillyl Alcohol., 1994, 76, 185-190.
[51]
Jirtle, R.L.; Haag, J.D.; Ariazi, E.A.; Gould, M.N. Increased mannose 6-phosphate/insulin-like growth factor II receptor and transforming growth factor beta 1 levels during monoterpene-induced regression of mammary tumors. Cancer Res., 1993, 53(17), 3849-3852.
[PMID: 8358708]
[52]
Mills, J.J.; Chari, R.S.; Boyer, I.J.; Gould, M.N.; Jirtle, R.L. Induction of apoptosis in liver tumors by the monoterpene perillyl alcohol. Cancer Res., 1995, 55(5), 979-983.
[PMID: 7867007]
[53]
Wróblewska, A. The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules, 2014, 19(12), 19907-19922.
[http://dx.doi.org/10.3390/molecules191219907] [PMID: 25460313]
[54]
Wróblewska, A.; Makuch, E.; Miadlicki, P. The Studies on the Limonene Oxidation over the Microporous TS-1 Catalyst. Catal. Today, 2016, 268, 121-129.
[http://dx.doi.org/10.1016/j.cattod.2015.11.008]
[55]
Wróblewska, A.; Miadlicki, P.; Makuch, E.; Benedyczak, N. Epoxidation of natural limonene extracted from orange peels with hydrogen peroxide over Ti-MCM-41 catalyst. Pol. J. Chem. Technol., 2018, 20(1), 1-6.
[http://dx.doi.org/10.2478/pjct-2018-0001]
[56]
Wróblewska, A.; Makuch, E.; Młodzik, J.; Koren, Z.C.; Michalkiewicz, B. Fe/Nanoporous carbon catalysts obtained from molasses for the limonene oxidation process. Catal. Lett., 2017, 147(1), 150-160.
[http://dx.doi.org/10.1007/s10562-016-1910-7]
[57]
Młodzik, J.; Wróblewska, A.; Makuch, E.; Wróbel, R.J.; Michalkiewicz, B. Fe/EuroPh Catalysts for Limonene Oxidation to 1,2-Epoxylimonene, Its Diol, Carveol, Carvone and Perillyl Alcohol. Catal. Today, 2016, 268, 111-120.
[http://dx.doi.org/10.1016/j.cattod.2015.11.010]
[58]
Glonek, K.; Wróblewska, A.; Makuch, E.; Ulejczyk, B.; Krawczyk, K.; Wróbel, R.J.; Koren, Z.C.; Michalkiewicz, B. Oxidation of Limonene Using Activated Carbon Modified in Dielectric Barrier Discharge Plasma. Appl. Surf. Sci., 2017, 420, 873-881.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.136]
[59]
Wróblewska, A.; Serafin, J.; Gawarecka, A.; Miądlicki, P.; Urbaś, K.; Koren, Z.C.; Llorca, J.; Michalkiewicz, B. Carbonaceous Catalysts from Orange Pulp for Limonene Oxidation. Carbon Lett., 2020, 30(2), 189-198.
[http://dx.doi.org/10.1007/s42823-019-00084-2]
[60]
Melchiors, M.S.; Vieira, T.Y.; Pereira, L.P.S.; Carciofi, B.A.M.; De Araújo, P.H.H.; De Oliveira, D.; Sayer, C. Epoxidation of (R)-(+)-Limonene to 1,2-Limonene Oxide Mediated by Low-Cost Immobilized Candida Antarctica Lipase Fraction B. Ind. Eng. Chem. Res., 2019, 58(31), 13918-13925.
[http://dx.doi.org/10.1021/acs.iecr.9b02168]
[61]
Hopmann, K.H.; Hallberg, B.M.; Himo, F. Catalytic mechanism of limonene epoxide hydrolase, a theoretical study. J. Am. Chem. Soc., 2005, 127(41), 14339-14347.
[http://dx.doi.org/10.1021/ja050940p] [PMID: 16218628]
[62]
Gomes, M.F.T.; Antunes, O.A.C. Oxidation of limonene catalyzed by Mnm (Salen) C1. H20. Catal. Lett., 1996, 38, 133-134.
[63]
Niño-Arrieta, E.; Villa-Holguín, A.L.; Alarcón-Durango, E.A.; Talavera-López, A.; Gómez-Torres, S.A.; Fuentes-Zurita, G.A. Limonene Epoxidation in Aqueous Phase over Ti/KIT-6. Rev. Fac. Ing., 2018, (88), 74-79.
[http://dx.doi.org/10.17533/udea.redin.n88a08]
[64]
Martínez, Q.H.; Paez-Mozo, E.A.; Martínez, O. F. Selective Photo-Epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes. Top. Catal., 2021, 64(1–2), 36-50.
[http://dx.doi.org/10.1007/s11244-020-01355-3]
[65]
Santa, A.A.M.; Vergara, J.C.; Palacio, S.L.A.; Echavarría, I.A. Limonene epoxidation by molecular sieves zincophosphates and zincochromates. Catal. Today, 2008, 133–135(1–4), 80-86.
[http://dx.doi.org/10.1016/j.cattod.2007.12.025]
[66]
Anderson, J.; Georgiy, B. Limonene Epoxidation Studies in Order to Obtain Natural Monomers. Soc. Biomater., 2011, 878.
[67]
Leandro, S.R.; Fernandes, C.I.; Viana, A.S.; Mourato, A.C.; Vaz, P.D.; Nunes, C.D. Catalytic Performance of Bulk and Colloidal Co/Al Layered Double Hydroxide with Au Nanoparticles in Aerobic Olefin Oxidation. Appl. Catal. A Gen., 2019, 584(May), 117155.
[http://dx.doi.org/10.1016/j.apcata.2019.117155]
[68]
Cagnoli, M.V.; Casuscelli, S.G.; Alvarez, A.M.; Bengoa, J.F.; Gallegos, N.G.; Samaniego, N.M.; Crivello, M.E.; Ghione, G.E.; Pérez, C.F.; Herrero, E.R.; Marchetti, S.G. “clean” Limonene Epoxidation Using Ti-MCM-41 Catalyst. Appl. Catal. A Gen., 2005, 287(2), 227-235.
[http://dx.doi.org/10.1016/j.apcata.2005.04.001]
[69]
Charbonneau, L.; Kaliaguine, S. Epoxidation of Limonene over Low Coordination Ti in Ti- SBA-16. Appl. Catal. A Gen., 2017, 533, 1-8.
[http://dx.doi.org/10.1016/j.apcata.2017.01.001]
[70]
Uguina, M.A.; Delgado, J.A.; Rodríguez, A.; Carretero, J.; Gómez-Díaz, D. Alumina as Heterogeneous Catalyst for the Regioselective Epoxidation of Terpenic Diolefins with Hydrogen Peroxide. J. Mol. Catal. Chem., 2006, 256(1–2), 208-215.
[http://dx.doi.org/10.1016/j.molcata.2006.04.049]
[71]
Srinivas, D.; Ratnasamy, P. Spectroscopic and Catalytic Properties of SBA-15 Molecular Sieves Functionalized with Acidic and Basic Moieties. Microporous Mesoporous Mater., 2007, 105(1–2), 170-180.
[http://dx.doi.org/10.1016/j.micromeso.2007.05.024]
[72]
Oliveira, P.; Rojas-Cervantes, M.L. Limonene Oxidation over V2O5/TiO2 Catalysts. Catal. Today , 2006, 118(3-4 SPEC. ISS), 307-314.
[http://dx.doi.org/10.1016/j.micromeso.2007.05.024]
[73]
Michel, T.; Cokoja, M.; Sieber, V.; Kühn, F.E. Selective Epoxidation of (+)-Limonene Employing Methyltrioxorhenium as Catalyst. J. Mol. Catal. Chem., 2012, 358, 159-165.
[http://dx.doi.org/10.1016/j.molcata.2012.03.011]
[74]
Madadi, S.; Charbonneau, L.; Bergeron, J.Y.; Kaliaguine, S. Aerobic Epoxidation of Limonene Using Cobalt Substituted Mesoporous SBA-16 Part 1: Optimization via Response Surface Methodology (RSM). Appl. Catal. B, 2019, 2020(260), 118049.
[http://dx.doi.org/10.1016/j.apcatb.2019.118049]
[75]
Joseph, T.; Halligudi, S.B. Oxyfunctionalization of Limonene Using Vanadium Complex Anchored on Functionalized SBA-15. J. Mol. Catal. Chem., 2005, 229(1–2), 241-247.
[http://dx.doi.org/10.1016/j.molcata.2004.12.008]
[76]
Resul, M.F.M.G.; López Fernández, A.M.; Rehman, A.; Harvey, A.P. Development of a Selective, Solvent-Free Epoxidation of Limonene Using Hydrogen Peroxide and a Tungsten-Based Catalyst. React. Chem. Eng., 2018, 3(5), 747-756.
[http://dx.doi.org/10.1039/C8RE00094H]
[77]
Guidotti, M.; Psaro, R.; Batonneau-Gener, I.; Gavrilova, E. Heterogeneous Catalytic Epoxidation: High Limonene Oxide Yields by Surface Silylation of Ti-MCM-41. Chem. Eng. Technol., 2011, 34(11), 1924-1927.
[http://dx.doi.org/10.1002/ceat.201100243]
[78]
Wróblewska, A.; Malko, M.; Walasek, M. Environmental Friendly Method of the Epoxidation of Limonene with Hydrogen Peroxide over the Ti-SBA-15 Catalyst. Pol. J. Chem. Technol., 2018, 20(4), 6-12.
[http://dx.doi.org/10.2478/pjct-2018-0047]
[79]
Oubaassine, S.; Köckritz, A.; Eckelt, R.; Martin, A.; Ait Ali, M.; El Firdoussi, L. Catalytic β-Bromohydroxylation of natural terpenes: Useful intermediates for the synthesis of terpenic epoxides. J. Chem., 2019, 2019, 9268567.
[http://dx.doi.org/10.1155/2019/9268567]
[80]
Arizaga, B.; de Leon, A.; Burgue, N.; Lopez, A.; Paz, D.; Martınez, N.; Lorenzo, D.; Dellacassa, E.; Bussi, J. A clean process for the production of oxygenated limonene derivatives starting from orange oil. J. Chem. Technol. Biotechnol., 2007, 83(May), 532-538.
[http://dx.doi.org/10.1002/jctb.1690]
[81]
Malko, M.; Antosik, A.K.; Wróblewska, A.; Czech, Z.; Wilpiszewska, K.; Miadlicki, P.; Michalkiewicz, B. Montmorillonite as the Catalyst in Oxidation of Limonene with Hydrogen Peroxide and in Isomerization of Limonene. Pol. J. Chem. Technol., 2017, 19(4), 50-58.
[http://dx.doi.org/10.1515/pjct-2017-0067]
[82]
Charbonneau, L.; Foster, X.; Kaliaguine, S. Ultrasonic and catalyst-free epoxidation of limonene and other terpenes using dimethyl dioxirane in semibatch conditions. ACS Sustain. Chem.& Eng., 2018, 6(9), 12224-12231.
[http://dx.doi.org/10.1021/acssuschemeng.8b02578]
[83]
Cubillos, J.; Vásquez, S.; Montes de Correa, C. Salen Manganese (III) Complexes as Catalysts for R-(+)-Limonene Oxidation. Appl. Catal. A Gen., 2010, 373(1–2), 57-65.
[http://dx.doi.org/10.1016/j.apcata.2009.10.041]
[84]
Marino, D.; Gallegos, N.G.; Bengoa, J.F.; Alvarez, A.M.; Cagnoli, M.V.; Casuscelli, S.G.; Herrero, E.R.; Marchetti, S.G. Ti-MCM-41 catalysts prepared by post-synthesis methods. Limonene epoxidation with h2o2. Catal. Today, 2008, 133–135(1–4), 632-638.
[http://dx.doi.org/10.1016/j.cattod.2007.12.111]
[85]
Becerra, J.A.; Arbeláez, Ó.F.; Villa, A.L. Transformation of Monoterpenes and Monoterpenoids Using Gold-Based Heterogeneous Catalysts. Braz. J. Chem. Eng., 2020, 37(1), 1-27.
[http://dx.doi.org/10.1007/s43153-020-00013-1]
[86]
Costa, V.V.; Da Silva Rocha, K.A.; Kozhevnikov, I.V.; Kozhevnikova, E.F.; Gusevskaya, E.V. Heteropoly Acid Catalysts for the Synthesis of Fragrance Compounds from Biorenewables: Isomerization of Limonene Oxide. Catal. Sci. Technol., 2013, 3(1), 244-250.
[http://dx.doi.org/10.1039/C2CY20526B]
[87]
Grau, R.J.; Zgolicz, P.D.; Gutierrez, C.; Taher, H.A. Liquid Phase Hydrogenation, Isomerization and Dehydrogenation of Limonene and Derivatives with Supported Palladium Catalysts. J. Mol. Catal. Chem., 1999, 148(1–2), 203-214.
[http://dx.doi.org/10.1016/S1381-1169(99)00108-9]
[88]
Cotta, R.F.; Martins, R.A.; Pereira, M.M.; da Silva Rocha, K.A.; Kozhevnikova, E.F.; Kozhevnikov, I.V.; Gusevskaya, E.V. Heteropoly Acid Catalysis for the Isomerization of Biomass-Derived Limonene Oxide and Kinetic Separation of the Trans-Isomer in Green Solvents. Appl. Catal. A Gen., 2019, 584(May), 117173.
[http://dx.doi.org/10.1016/j.apcata.2019.117173]
[89]
Nguyen, T-T.T.; Duus, F.; Le, T.N. Solvent Free Preparation of P-Cymene from Limonene Using Vietnamese Montmorillonite. J. Eng. Technol. Educ., 2013, 9(5), 94-99.
[90]
Retajczyk, M.; Wróblewska, A.; Szymańska, A.; Michalkiewicz, B. Isomerization of Limonene over Natural Zeolite-Clinoptilolite. Clay Miner., 2019, 54(2), 121-129.
[http://dx.doi.org/10.1180/clm.2019.18]
[91]
Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Activation of Natural Mordenite by Various Acids: Characterization and Evaluation in the Transformation of Limonene into p-Cymene. Mol. Catal., 2018, 450(March), 95-103.
[http://dx.doi.org/10.1016/j.mcat.2018.03.013]
[92]
Makarouni, D.; Lycourghiotis, S.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of limonene into p-cymene over acid activated natural mordenite utilizing atmospheric oxygen as a green oxidant: A novel mechanism. Appl. Catal. B, 2018, 224, 740-750.
[http://dx.doi.org/10.1016/j.apcatb.2017.11.006]
[93]
Buhl, D.; Roberge, D.M.; Hölderich, W.F. Production of P-Cymene from α-Limonene over Silica Supported Pd Catalysts. Appl. Catal. A Gen., 1999, 188(1–2), 287-299.
[http://dx.doi.org/10.1016/S0926-860X(99)00219-7]
[94]
Yılmazoğlu, E.; Akgün, M. P-Cymene production from orange peel oil using some metal catalyst in supercritical alcohols. J. Supercrit. Fluids, 2018, 131, 37-46.
[http://dx.doi.org/10.1016/j.supflu.2017.08.015]
[95]
Cui, H.; Zhang, J.; Luo, Z.; Zhao, C. Mechanisms into dehydroaromatization of bio-derived limonene to: P -Cymene over Pd/HZSM-5 in the Presence and Absence of H2. RSC Advances, 2016, 6(71), 66695-66704.
[http://dx.doi.org/10.1039/C6RA17159A]
[96]
Weyrich, P.A.; Hölderich, W.F. Dehydrogenation of α-Limonene over Ce Promoted, Zeolite Supported Pd Catalysts. Appl. Catal. A Gen., 1997, 158(1–2), 145-162.
[http://dx.doi.org/10.1016/S0926-860X(96)00383-3]
[97]
Zhao, C.; Gan, W.; Fan, X.; Cai, Z.; Dyson, P.J.; Kou, Y. Aqueous-Phase Biphasic Dehydroaromatization of Bio-Derived Limonene into p-Cymene by Soluble Pd nanocluster catalysts. J. Catal., 2008, 254(2), 244-250.
[http://dx.doi.org/10.1016/j.jcat.2008.01.003]
[98]
Retajczyk, M.; Wróblewska, A. Isomerization and dehydroaromatization of r(+)-Limonene over the Ti-Mcm-41 Catalyst: Effect of temperature, reaction time and catalyst content on product yield. Catalysts, 2019, 9(6), 508.
[http://dx.doi.org/10.3390/catal9060508]
[99]
Retajczyk, M.; Wróblewska, A. The isomerization of limonene over the Ti-SBA-15 catalyst-the influence of reaction time, temperature, and catalyst content. Catalysts, 2017, 7(9)
[http://dx.doi.org/10.3390/catal7090273]
[100]
Martín-Luengo, M.A.; Yates, M.; Martínez Domingo, M.J.; Casal, B.; Iglesias, M.; Esteban, M.; Ruiz-Hitzky, E. Synthesis of P-Cymene from Limonene, a Renewable Feedstock. Appl. Catal. B, 2008, 81(3–4), 218-224.
[http://dx.doi.org/10.1016/j.apcatb.2007.12.003]
[101]
Tavera Ruiz, C.P.; Gauthier-Maradei, P.; Capron, M.; Pirez, C.; Gardoll, O.; Katryniok, B.; Dumeignil, F. Transformation of Dl limonene into aromatic compounds using supported heteropolyacid catalysts. Catal. Lett., 2019, 149(1), 328-337.
[http://dx.doi.org/10.1007/s10562-018-2606-y]
[102]
Lycourghiotis, S.; Makarouni, D.; Kordouli, E.; Bourikas, K.; Kordulis, C.; Dourtoglou, V. Transformation of limonene into high added value products over acid activated natural montmorillonite. Catal. Today, 2020, 355(March), 757-767.
[http://dx.doi.org/10.1016/j.cattod.2019.04.036]
[103]
Martin-Luengo, M.A.; Yates, M.; Rojo, E.S.; Huerta Arribas, D.; Aguilar, D.; Ruiz Hitzky, E. Sustainable P-Cymene and hydrogen from limonene. Appl. Catal. A Gen., 2010, 387(1–2), 141-146.
[http://dx.doi.org/10.1016/j.apcata.2010.08.016]
[104]
Pines, H.; A., Vesely J.; Ipatiff, V.N. Migration of Double Bonds i n Olefinic and Diolefinic Hydrocarbons Catalyzed BySodium. Dehydrogenation of d-Limonene to p-Cymene. J. Am. Chem. Soc., 1955, 77, 347-348.
[http://dx.doi.org/10.1021/ja01607a031]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy