Skip to main content
Log in

Exfoliation of Methylamine and n-Butylamine Derivatives of Layered Perovskite-Like Oxides HLnTiO4 and H2Ln2Ti3O10 (Ln = La, Nd) into Nanolayers

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The ability of layered perovskite-like titanates HLnTiO4 and H2Ln2Ti3O10 (Ln = La, Nd) to exfoliate into nanosheets in aqueous media under various conditions has been studied. Along with protonated titanates, their inorganic-organic hybrids with methylamine and n-butylamine were used as precursors for lamination. Exfoliation was carried out according to chemical and physical-chemical strategies, including stirring of initial compounds in diluted aqueous tetrabutylammonium hydroxide solution and sonication of the same mixtures, respectively. It was demonstrated that among the compounds under consideration, the methylamine derivative exfoliation degree is the highest. Successful obtainment of nanolayers with linear sizes of 30–100 nm for all the titanates considered was confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Byeon, S., Yoon, J.-J., and Lee, S.-O., A new family of protonated oxides HLnTiO4 (Ln = La, Nd, Sm, and Gd), J. Solid State Chem., 1996, vol. 127, pp. 119–122.

    Article  Google Scholar 

  2. Gopalakrishnan, J. and Bhat, V., A2Ln2Ti3O10 (A = potassium or rubidium; Ln = lanthanum or rare earth): A new series of layered perovskites exhibiting ion exchange, Inorg. Chem., 1987, vol. 26, pp. 4299–4301.

    Article  CAS  Google Scholar 

  3. Uppuluri, R., Sen Gupta, A., Rosas, A., and Mallouk, T., Soft chemistry of ion-exchangeable layered metal oxides, Chem. Soc. Rev., 2018, vol. 47, pp. 2401–2430.

    Article  CAS  Google Scholar 

  4. Zvereva, I.A., Silyukov, O.I., and Chislov, M.V., Ion-exchange reactions in the structure of perovskite-like layered oxides: I. Protonation of NaNdTiO4 complex oxide, Russ. J. Gen. Chem., 2011, vol. 81, pp. 1434–1441.

    Article  CAS  Google Scholar 

  5. Yafarova, L.V., Silyukov, O.I., Myshkovskaya, T.D., Minich, I.A., and Zvereva, I.A., New data on protonation and hydration of perovskite-type layered oxide KCa2Nb3O10, J. Therm. Anal. Calorim., 2020, vol. 1, pp. 87–93

    Google Scholar 

  6. Silyukov, O.I., Abdulaeva, L.D., Burovikhina, A.A., Rodionov, I.A., and Zvereva I.A., Phase transformations during HLnTiO4 (Ln = La, Nd) thermolysis and photocatalytic activity of obtained compounds, J. Solid State Chem., 2015, vol. 226, pp. 101–106.

    Article  CAS  Google Scholar 

  7. Minich, I.A., Silyukov, O.I., Kulish, L.D., and Zvereva, I.A., Study on thermolysis process of new hydrated and protonated perovskite-like oxides H2K0.5Bi2.5Ti4O13·yH2O, Ceram. Int., 2019, vol. 45, pp. 2704–2709.

    Article  CAS  Google Scholar 

  8. Silyukov, O.I., Kurnosenko, S.A., and Zvereva, I.A., Intercalation of methylamine into the protonated forms of layered perovskite-like oxides HLnTiO4 (Ln = La and Nd), Glass Phys. Chem., 2018, vol. 44, pp. 428–432.

    Article  CAS  Google Scholar 

  9. Minich, I.A., Silyukov, O.I., Gak, V.V., Borisov, E.V., and Zvereva, I.A., Synthesis of organic–inorganic hybrids based on perovskite-like bismuth titanate H2K0.5Bi2.5Ti4O13·H2O and n-alkylamines, ACS Omega, 2020, vol. 5, pp. 8158–8168.

    Article  CAS  Google Scholar 

  10. Voytovich, V.V., Kurnosenko, S.A., Silyukov, O.I., Rodionov, I.A., and Zvereva, I.A., Study of n-alkylamine intercalated layered perovskite-like niobates HCa2Nb3O10 as photocatalysts for hydrogen production from an aqueous solution of methanol, Front. Chem., 2020, vol. 8, art. id. 300.

  11. Rodionov, I.A., Maksimova, E.A., Pozhidaev, A.Y., Kurnosenko, S.A., Silyukov, O.I., and Zvereva, I.A., Layered titanate H2Nd2Ti3O10 intercalated with n-butylamine: A new highly efficient hybrid photocatalyst for hydrogen production from aqueous solutions of alcohols, Front. Chem., 2019, vol. 7, art. id. 863.

  12. Tahara, S., Ichikawa, T., Kajiwara, G., and Sugahara, Y., Reactivity of the Ruddlesden-Popper phase H2La2Ti3O10 with organic compounds: Intercalation and grafting reactions, Chem. Mater., 2007, vol. 19, pp. 2352–2358.

    Article  CAS  Google Scholar 

  13. Kurnosenko, S.A., Silyukov, O.I., Mazur, A.S., and Zvereva I.A., Synthesis and thermal stability of new inorganic-organic perovskite-like hybrids based on layered titanates HLnTiO4 (Ln = La, Nd), Ceram. Int., 2019, vol. 46, pp. 5058–5068.

    Article  Google Scholar 

  14. Shelyapina, M.G., Lushpinskaya, I.P., Kurnosenko, S.A., Silyukov, O.I., and Zvereva, I.A., Identification of formation of intercalates and grafted organic derivatives of H2La2Ti3O10 by multinuclear NMR data, Russ. J. Gen. Chem., 2020, vol. 90, pp. 654–656.

    Article  Google Scholar 

  15. Silyukov, O.I., Kulish, L.D., Trofimova, D.V., Burovikhina, A.A., Chislov, M.V., Rodionov, I.A., Zhukov, Y.M., and Zvereva, I.A., Formation of vanadium-containing nanostructures on the surface of protonated forms of layered perovskite-like titanates K2La2Ti3O10 and NaLaTiO4, J. Solid State Chem., 2018, vol. 259, pp. 28–34.

    Article  CAS  Google Scholar 

  16. Kawashima, K., Hojamberdiev, M., Wagata, H., Yubuta, K., Domen, K., and Teshima, K., Protonated oxide, nitrided, and reoxidized K2La2Ti3O10 crystals: Visible-light-induced photocatalytic water oxidation and fabrication of their nanosheets, ACS Sustain. Chem. Eng., 2017, vol. 5. pp. 232–240.

    Article  CAS  Google Scholar 

  17. Takagaki, A., Tagusagawa, C., Hayashi, S., Hara, M., and Domen K., Nanosheets as highly active solid acid catalysts for green chemical syntheses, Energy Environ. Sci., 2010, vol. 3, pp. 82–93.

    Article  CAS  Google Scholar 

  18. Yu, J., Li, C., Li, B., Zhu, X., Zhang, R., Ji, L., Tang, D., Asiri, A.M., Sun, X., Li, Q., Liu, S., and Luo, Y., A perovskite La2Ti2O7 nanosheet as an efficient electrocatalyst for artificial N2 fixation to NH3 in acidic media, Chem. Commun., 2019, vol. 55, pp. 6401–6404.

    Article  CAS  Google Scholar 

  19. Maeda, K. and Mallouk, T.E., Two-dimensional metal oxide nanosheets as building blocks for artificial photosynthetic assemblies, Bull. Chem. Soc. Jpn., 2018, vol. 92, pp. 38–54.

    Article  Google Scholar 

  20. Nicolosi, V., Chhowalla, M., Kanatzidis, M.G., Strano, M.S., and Coleman, J.N., Liquid exfoliation of layered materials, Science (Washington, DC, U. S.), 2013, vol. 340, p. 1226419

    Article  Google Scholar 

  21. Bai, F., Hu, Y., Hu, Y., Qiu, T., Miao, X., and Zhang, S., Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells, Sol. Energy Mater., 2018, vol. 184, pp. 15–21.

    Article  CAS  Google Scholar 

  22. Yuan, H., Nguyen, M., Hammer, T., Koster, G., Rijnders, G., and Ten Elshof, J.E., Synthesis of KCa2Nb3O10 crystals with varying grain sizes and their nanosheet monolayer films as seed layers for piezoMEMS applications, ACS Appl. Mater. Interfaces, 2015, vol. 7, pp. 27473–27478.

    Article  CAS  Google Scholar 

  23. Pomelova, T.A., Khandarkhaeva, S.E., Podlipskaya, T.Y., and Naumov, N.G., Top-down synthesis and characterization of exfoliated layered KLnS2 (Ln = La, Ce, Gd, Yb, Lu) nanosheets, their colloidal dispersions and films, Colloids Surf., A, 2016, vol. 504, pp. 298–304.

    Article  CAS  Google Scholar 

  24. Han, Y.-S., Park, I., and Choy, J.-H., Exfoliation of layered perovskite, KCa2Nb3O10, into colloidal nanosheets by a novel chemical process, J. Mater. Chem., 2001, vol. 11, pp. 1277–1282.

    Article  CAS  Google Scholar 

  25. Jiang, D., Wang, T., Xu, Q., Li, D., Meng, S., and Chen, M., Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline, Appl. Catal. B: Environ., 2017, vol. 201, pp. 617–628.

    Article  CAS  Google Scholar 

  26. Xu, J., Xia, B., Wang, M., Fan, Z., Zhang, X., Ma, J., Liu, L., Zhang, B., Zhang, D., and Tong, Z., A biosensor consisting of Ca2Nb3O10- substrates and functional molecule manganese porphyrins (MnTMPyP) utilized for the determinations of nitrite, Funct. Mater. Lett., 2018, vol. 11, p. 1850053

    Article  CAS  Google Scholar 

  27. Schaak, R.E. and Mallouk, T.E., Prying apart Ruddlesden–Popper phases: Exfoliation into sheets and nanotubes for assembly of perovskite thin films, Solid State Ionics, 2000, vol. 12, pp. 3427–3434.

    CAS  Google Scholar 

  28. Kawashima, K., Hojamberdiev, M., Chen, S., Yubuta, K., Wagata, H., Domen, K., and Teshima, K., Understanding the effect of partial N3–to-O2-substitution and H+-to-K+ exchange on photocatalytic water reduction activity of Ruddlesden–Popper layered perovskite KLaTiO4, Mol. Catal., 2017, vol. 432, pp. 250–258.

    Article  CAS  Google Scholar 

  29. Byeon, S.-H., Lee, S.-O., and Kim, H., Structure and Raman spectra of layered titanium oxides, J. Solid State Chem., 1997, vol. 130, pp. 110–116.

    Article  CAS  Google Scholar 

  30. Tsunoda, Y., Sugimoto, W., and Sugahara, Y., Intercalation behavior of n-alkylamines into a protonated form of a layered perovskite derived from aurivillius phase Bi2SrTa2O9, Chem. Mater., 2003, vol. 15, pp. 632–635.

    Article  CAS  Google Scholar 

  31. Kurnosenko, S.A., Silyukov, O.I., and Zvereva, I.A., Preparation of porous particles of layered perovskite-like titanate HLaTiO4, Glass Phys. Chem., 2020, vol. 3, pp. 280–284.

    Google Scholar 

  32. Silyukov, O.I., Chislov, M.V., Burovikhina, A.A., Utkina, T.D., and Zvereva, I.A., Thermogravimetry study of ion exchange and hydration in layered oxide materials, J. Therm. Anal. Calorim., 2012, vol. 110, pp. 187–192.

    Article  CAS  Google Scholar 

  33. Rodionov, I.A., Silyukov, O.I., Utkina, T.D., Chislov, M.V., Sokolova, Y.P., and Zvereva, I.A., Photocatalytic properties and hydration of perovskite-type layered titanates A2Ln2Ti3O10 (A = Li, Na, K; Ln = La, Nd), Russ. J. Gen. Chem., 2012, vol. 82, pp. 1191–1196.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are grateful to the Saint Petersburg State University Research Park: Centre for X-ray Diffraction Studies, Centre for Optical and Laser Research, Centre for Chemical Analysis and Materials Research, Centre for Thermal Analysis and Calorimetry, Interdisciplinary Centre for Nanotechnology, Centre for Innovative Technologies of Composite Nanomaterials.

Funding

The research was supported by the Russian Science Foundation (20-73-00027). The initial methylamine and n‑butylamine derivatives were obtained and studied within the grant of the President of the Russian Federation (МК-480.2020.3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Silyukov.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurnosenko, S.A., Silyukov, O.I., Minich, I.A. et al. Exfoliation of Methylamine and n-Butylamine Derivatives of Layered Perovskite-Like Oxides HLnTiO4 and H2Ln2Ti3O10 (Ln = La, Nd) into Nanolayers. Glass Phys Chem 47, 372–381 (2021). https://doi.org/10.1134/S1087659621040131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621040131

Keywords:

Navigation