Skip to main content
Log in

Intelligent Materials for the Power Sector (Overview)

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

The promising development of the smart electric power industry is based on the use of functional materials created based on the latest achievements in science and technology. The properties of intelligent materials change when exposed to any external factors. The ability of such materials to convert one type of energy into another and the ability to control this conversion make it possible to create various sensors and actuators for performing complex functions that are widely used in the electric power industry. This review article considers the use of superconductors to improve the characteristics of electrical equipment for energy purposes and shows the obvious advantages of high-temperature superconducting cable lines, as well as the high-temperature superconductivity of transformers and electrical machines. All the intelligent materials, the introduction of which into the composition of high-voltage insulation allows us to control its quality during operation, and materials that start the process of the self-healing of the insulation when microcracks appear, as well as the optimal microstructures of hard magnetic materials in various temperature modes, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Belikov, D.V., Proposals on priority areas for the development of new materials and dual-use nanotechnologies and analysis of possible areas of their application, Innov. Ekspert.: Nauch. Tr., 2018, no. 1 (22), pp. 123–134.

  2. Belikov, D.V., Maryshev, E.A., and Mironov, N.A., Problems of creating and introducing promising materials for the weapons system—the view of experts from the federal register of the scientific and technical sphere, Innov. Ekspert.: Nauch. Tr., 2016, no. 2 (17), pp. 220–228.

  3. Moshnikov, V.A. and Shilova, O.A., Sol-gel-nanocomposites—promising materials for membranes and catalytic layers of fuel cells, in Osnovy vodorodnoi energetiki (Basics of Hydrogen Energy), St. Petersburg: LETI, 2010, pp. 183–211.

  4. Suzdaltsev, A.V., Nikolaev, A.Yu., and Zaikov, Yu.P., Modern ways for obtaining Al-Sc master alloys: A review, Tsvetn. Met., 2018, no. 1, p. 69.

  5. Antipov, V.N., Grozov, A.D., and Ivanova, A.V., New conducting materials and their influence on the parameters of high-speed electromechanical power converters, Elektrichestvo, 2019, no. 5, pp. 24–32.

  6. Bkhavsar, R., Vaidya, N., Ganguly, P., Humphreys, A., Robbinson, A., Tu, H., and Wicks, N., New intelligent materials, Neftegaz. Obozr., 2008, no. 1, pp. 38–49.

  7. Glebov, I.A., Chernoplekov, N.A., and Al’tov, V.A., Superconducting technologies a new stage in the development of electrical engineering and power engineering, Sverkhprovod.: Issled. Razrab., 2002, no. 11, pp. 5–15.

  8. Sytnikov, V.E., Superconducting cable lines: state of the art and prospects, Akad. Energet., 2011, no. 6 (44), pp. 74–83.

  9. Lutidze, Sh.I. and Dzhafarov, E.A., Sverkhprovodyashchie transformatory (Superconducting Transformers), Moscow: Nauchtekhlitizdat, 2002.

  10. Antipov, V.N., Grozov, A.D., and Ivanova, A.V., Global wind energy within the megawatt range, Innov. Ekspert.: Nauchnye Tr., 2019, no. 2 (27), pp. 94–105.

  11. Antipov, V.N., Grozov, A.D., and Ivanova, A.V., Megawatt-range electrical generators for wind power: State of the art and development trends, Elektrichestvo, 2019, no. 8, pp. 34–41.

  12. Sytnikov, V.E. and Vysotskii, V.S., Construction fundamentals of high temperature superconducting power cables, Izv. Akad. Nauk, Energ., 2008, no. 1, pp. 89–107.

  13. Volkov, E.P., Vysotskii, V.S., Karpyshev, A.V., Kostyuk, V.V., Sytnikov, V.E., and Firsov, V.P., Creation of the first high-temperature superconducting cable in Russia, Izv. Akad. Nauk, Energ., 2009, no. 4, pp. 31–43.

  14. Geschiere, A., Willen, D., Piga, E., Barendregt, P., Royal, J., and Lynch, N., Long distance Triax HTS cable, in Proceedings of CIRED 19th International Conference on Electricity Distribution, Vienna, Austria, May 21–24, 2007, Paper No. 0196.

  15. Kojima, H., Kotari, M., Kito, T., and Hayakawa, N., Current limiting and recovery characteristics of 2 MBA class superconducting fault current limiting transformer, IEEE Trans. Appl. Supercond., 2011, vol. 21, no. 3, pp. 1401–1404.

    Article  CAS  Google Scholar 

  16. Wojtasiewicz, G., Janowski, T., Kozak, S., Kozak, J., Majka, M., and Kondratowicz-Kucewicz, B., Experimental investigation of the model of superconducting transformer with the winding made of 2G HTS tape, IEEE Trans. Appl. Supercond., 2012, vol. 22, no. 3, p. 5500504.

    Article  Google Scholar 

  17. Dai, S., Xiao, L., Wang, Z., Guo, W., Zhang, J., Zhang, D., Gao, Z., Song, N., Zhang, Z., Zhu, Z., Zhang, F., Xu, X., Qiu, Q., and Lin, L., Development and demonstration of 1 MJ high—Tc SMES, IEEE Trans. Appl. Supercond., 2012, vol. 22, no. 3, p. 5700304.

    Article  Google Scholar 

  18. Staines, M., Pannu, M., Staines, M., Glasson, N., Pannu, M., Thakur, K.P., Badcock, R., Allpress, N., D’Souza, Premal., and Talantsev, E., The development of a Roebel cable based 1 MBA HTS transformer, Supercond. Sci. Technol., 2011, no. 25, no. 1, p. 014002.

  19. Wang, Y., Zhao, X., Han, J., Li, H., Guan, Y., Bao, Q., Xiao, L., Lin, L., Xu, X., Song, N., and Zhang, F., Development and test in grid of 630 kVA three-phase high temperature superconducting transformer, Front. Elektr. Electron. Eng. China, 2009, vol. 4, no. 1, pp. 104–113.

    Article  Google Scholar 

  20. Volkov, E.P. and Dzhafarov, E.A., Rotating magnetic field superconducting transformer, Izv. Akad. Nauk, Energ., 2012, no. 3, pp. 113–121.

  21. Volkov, E.P. and Dzhafarov, E.A., HTSC transformer with localized magnetic field, Izv. Akad. Nauk, Energ., 2013, no. 5, pp. 3–10.

  22. Volkov, E.P. and Dzhafarov, E.A., Parameters of the HTSC transformer, Izv. Akad. Nauk, Energ., 2015, no. 1, pp. 62–73.

  23. Volkov, E.P., Dzhafarov, E.A., Fleishman, L.S., Vysotskii, V.S., and Sukonkin, V.V., The first in Russia HTSC transformer 1 MVA, 10/0.4 kV, Izv. Akad. Nauk, Energ., 2016, no. 5, pp. 45–56.

  24. AMSC. Sea Titan TM 10 MW Wind Turbine. http://www.amsc.com/documents/seatitan-10-mw-wind-turbine-data-shee. Accessed December 15, 2020.

  25. Snitchier, G., Gamdle, B., and King, C., 10 MW class superconductor wind turbine generators, IEEE Trans. Appl. Supercond., 2011, vol. 21, no. 3, pp. 1089–1092.

    Article  Google Scholar 

  26. Fair, R., Stautner, W., Douglass, M., Rajput-Ghoshal, R., Moscinski, M., Riley, P., Wagner, D., Kim, J., Hou, S., Lopez, F., Haran, K., Bray, J., Laskaris, T., Rochford, J., and Duckworth, R., Superconductivity for large-scale wind turbines, Final Scientific Report, 2012. www.osti.gov/servlets/purl/1052970. Accessed December 15, 2020.

  27. Advance, Magnetic Lab. http://www.magnetlab.com. Accessed December 15, 2020.

  28. Elektricheskie mashiny i ustroistva na osnove massivnykh vysokotemperaturnykh sverkhprovodnikov (Electrical Machines and Devices Based on Massive High-Temperature Superconductors), Kovalev, L.K., Kovalev, K.L., and Koneev, S.M.-A., Eds., Moscow: Fizmatlit, 2010.

  29. Kovalev, K.L., Poltavets, V.N., Kolchanova, I.P., Il’yasov, R.I., and Firsov, V.P., A 1 MVA high-temperature superconducting generator for windmills, Elektrichestvo, 2017, no. 10, pp. 4–15.

  30. Mikhailin, S.V. and Turov, V.D., Material for permanent magnets, RF Patent No. 2118007, 1998.

  31. Azizov, A.Sh., Andreev, A.M., Kostel’ov, A.M., and Polikarpov, Yu.I., Thermal conductivity of the insulation system of the stator winding of a high-power turbogenerator with air cooling, Russ. Electr. Eng., 2009, vol. 80, no. 3, pp. 128–131.

    Article  Google Scholar 

  32. Basu, S., German, I., Rhodes, R., Stevens, G.C., and Thomas, J., Advanced materials for self-healing electrical insulation systems, Adv. Mater.: TechConnect Briefs, 2016, pp. 153–156.

    Google Scholar 

  33. Lesaint, C., Risinggard, V., Holto, J., Sœternes, H.H., and Glomm, W.R., Self-healing high voltage electrical insulation materials, in Proceedings of the Electrical Insulation Conference, Philadelphia, Pennsylvania, USA, June 8–11, 2014, pp. 241–244.

  34. Holt, A.F., Topley, A.C., Brown, R.C.D., Lewin, P.L., Vaughan, A.S., and Lang, P., Towards intelligent insulation technologies, in Proceedings of the International Conference on Solid Dielectrics, Potsdam, Germany, July, 2010, pp. 4–9.

  35. Holt, A.F., Brown, R.C.D., Lewin, P.L., Vaughan, A.S., and Lang, P., Applications of liquid crystals in intelligent insulation, in Proceedings of the IEEE International Conference on Solid Dielectrics, Bologna, Italy, June 30–July 4, 2013.

Download references

Funding

The study was carried out as part of a state assignment of the Institute of Chemistry of the Russian Academy of Sciences (state registration no. of the topic AAAA-A19-119022290086-4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Antipov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipov, V.N., Grozov, A.D. & Ivanova, A.V. Intelligent Materials for the Power Sector (Overview). Glass Phys Chem 47, 297–307 (2021). https://doi.org/10.1134/S1087659621040039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1087659621040039

Keywords:

Navigation