Skip to main content
Log in

Obtaining ZrO2–3 mol % Y2O3 Ceramics with Various Degrees of Tetragonality and Studying Low Temperature Degradation

  • Published:
Glass Physics and Chemistry Aims and scope Submit manuscript

Abstract

Nanocrystalline ceramic samples of the ZrO2–3 mol % Y2O3 composition with varying degrees of tetragonality c/a (1.4337 and 1.0425) are obtained. The process of the low-temperature degradation of ceramics is studied by the methods of X-ray phase analysis and electron microscopy. It is found that samples with a high degree of tetragonality are more resistant to the action of a humid environment, while the phase composition in the bulk of the samples remains practically unchanged and the transformation t-ZrO2m-ZrO2 occurs mainly in the surface layers without significantly affecting the mechanical properties of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Zhigachev, A.O., Golovin, Yu.I., Umrikhin, A.V., Korenkov, V.V., Tyurin, A.I., Rodaev, V.V., and D’yachek, T.A., Keramicheskie materialy na osnove dioksida tsirkoniya (Ceramic Materials Based on Zirconium Dioxide), Moscow: Tekhnosfera, 2018.

  2. Stubican, V.S., Hink, R.C., and Ray, S.P., Phase equilibria and ordering in the system ZrO2-Y2O3, J. Am. Ceram. Soc., 1978, vol. 6, nos. 1–2, pp. 17–21.

    Article  Google Scholar 

  3. Kul’kov, S.N. and Buyakova, S.P., Phase composition and features of structure formation based on stabilized zirconium dioxide, Ross. Nanotekhnol., 2007, vol. 2, nos. 1–2, pp. 119–132.

    Google Scholar 

  4. Lughi, V. and Sergo, V., Low temperature degradation—aging—of zirconia: A critical review of the relevant aspects in dentistry, Dent. Mater., 2010, vol. 8, pp. 807–820.

    Article  Google Scholar 

  5. Chevalier, J., Gremillard, L., Virkar, A.V., and Clarke, D.R., The tetragonal-monoclinic transformation in zirconia: Llessons learned and future trends, J. Am. Ceram. Soc., 2009, vol. 92, no. 9, pp. 1901–1920.

    Article  CAS  Google Scholar 

  6. Eichler, J., Rodel, J., Ulrich, E., and Mark, H., Effect of grain size on mechanical properties of submicrometer 3Y-TZP: Fracture strength and hydrothermal degradation, J. Am. Ceram. Soc., 2007, vol. 90, no. 9, p. 2830–2836.

    Article  CAS  Google Scholar 

  7. Hannink, R.H., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, no. 3, pp. 461–487.

    Article  CAS  Google Scholar 

  8. Akimov, G.Ya., Marinin, G.A., and Timchenko, V.M., Influence of the composition of the tetragonal phase in the surface layers of zirconia based ceramics on their strength, Phys. Solid State, 2005, vol. 47, no. 11, pp. 2060–2062.

    Article  CAS  Google Scholar 

  9. Chevalier, J., Gremillard, L., and Deville, S., Low-lemperature degradation of zirconia and implications for biomedical implants, Ann. Rev. Mater. Res., 2007, vol. 37, no. 1, pp. 1–32.

    Article  CAS  Google Scholar 

  10. Gusev, A.I. and Kurlov, A.S., Characterization of nanocrystalline materials by the size of particles (grains), Metallofiz. Noveish. Tekhnol., 2008, vol. 30, no. 5, pp. 679–694.

    CAS  Google Scholar 

  11. ISO 13356, Implants for Surgery—Ceramic Materials Based on Yttria Stabilized Tetragonal Zirconia (Y-TZP), 2015, p. 16.

    Google Scholar 

  12. Property degradation of tetragonal zirconia induced by low-temperature defect reaction with water molecules, Chem. Mater., 2004, vol. 16, no. 21, pp. 3988–3994.

  13. Togaya, H. and Yoshimura, M., Collibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction, J. Am. Ceram. Soc., 1984, vol. 67, no. 6, pp. 119–121.

    Google Scholar 

  14. Vasserman, I.M., Khimicheskoe osazhdenie iz rastvorov (Chemical Precipitation from Solutions), Leningrad: Khimiya, 1980.

  15. Morozova, L.V., Kalinina, M.V., Panova, T.I., Arsent’ev, M.Yu., Khamova, T.V., Drozdova, I.A., and Shilova, O.A., Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 277–283.

    Article  CAS  Google Scholar 

  16. Morozova, L.V., Kalinina, M.V., Koval’ko, N.Yu., and Shilova, O.A., Preparation of zirconia-based nanoceramics with a high degree of tetragonality, Glass Phys. Chem., 2014, vol. 40, no. 3, pp. 352–355.

    Article  CAS  Google Scholar 

  17. Generalov, M.B., Kriokhimicheskaya nanotekhnologiya (Cryochemical Nanotechnology), Moscow: Akademkniga, 2006.

  18. Lukin, E.S., Modern high-density oxide ceramics with adjustable microstructure. Influence of aggregation of oxide powders on sintering and microstructure of ceramics, Ogneup. Tekh. Keram., 1996, no. 1, pp. 5–8.

  19. Ivanova, A.S., Fedotov, M.A., Litvak, G.S., and Moroz, E.M., Preparation of fine-particle zirconia-based materials, Inorg. Mater., 2000, vol. 36, no. 4, pp. 352–358.

    Article  CAS  Google Scholar 

  20. Zavodinskii, V.G. and Chibisov, A.N., Stability of cubic zirconia and of stoichiometric zirconia nanoparticles, Phys. Solid State, 2006, vol. 48, no. 2, pp. 363–368.

    Article  Google Scholar 

  21. Karban’, O.V., Khasanov, O.L., and Kanunnikova, O.M., Microstructure of ZrO2 ceramics, Zh. Strukt. Khim., 2004, vol. 45, Suppl., pp. 149–155.

    Google Scholar 

  22. Dudnik, E.V., Zaitseva, Z.A., Shevchenko, A.V., and Lopato, L.M., Sintering of ultrafine powders based on zirconium dioxide, Poroshk. Metall., 1995, nos. 5–6, pp. 43–56.

  23. Chukharev, V.F., Studenikin, G.V., Mokhon’, T.V., Lukashenko, G.V., Ustyugov, A.V., Krylova, O.E., Suvorova, E.A., Grechko, M.V., and Efremova, I.G., Features of processing YSZ nanopowders and electrical conductivity of ceramics based on them, Tekhnol. Neorg. V-v Mater., 2005, no. 7, pp. 58–71.

  24. Borik, M.A., Bublik, V.T., Kulebyakin, A.V., Lomonova, E.E., Milovich, F.O., Myzina, V.A., Osiko, V.V., and Tabachkova, N.Y., Phase composition, structure and mechanical properties of PSZ (partially stabilized zirconia) crystals as a function of stabilizing impurity content, J. Alloys Compd., 2013, vol. 586, Suppl. 1, pp. 231–S235.

    Article  Google Scholar 

  25. Gremillard, L., Chevalier, J., and Epicier, T., Modeling the aging kinetics of zirconia ceramics, J. Eur. Ceram. Soc., 2004, vol. 24, pp. 3483–3489.

    Article  CAS  Google Scholar 

  26. Schubert, H. and Frey, F., Stability of Y-TZP during hydrothermal treatment: Neutron experiments and stability considerations, J. Eur. Ceram. Soc., 2005, vol. 25, no. 9, pp. 1597–1604.

    Article  CAS  Google Scholar 

  27. Dmitrievskiy, A.A., Zhigacheva, D.G., Efremova, N.Yu., and Umrikhin, A.V., Phase composition stability of nanostructured composite ceramics based on CaO–ZrO2 under hydrothermal impact, Nanotechnol. Russ., 2019, vol. 14, no. 3, pp. 125–131.

    Article  CAS  Google Scholar 

Download references

Funding

The study was carried out as part of the research project “Inorganic Synthesis and Research of Ceramic and Organic-Inorganic Composite Materials and Coatings” (state registration number (TsIT and S): АААА-А19-119022290091-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Tikhonov.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, M.V., Fedorenko, N.Y., Arsent’ev, M.Y. et al. Obtaining ZrO2–3 mol % Y2O3 Ceramics with Various Degrees of Tetragonality and Studying Low Temperature Degradation. Glass Phys Chem 47, 382–389 (2021). https://doi.org/10.1134/S108765962104009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S108765962104009X

Keywords:

Navigation