Skip to main content
Log in

I-DREM: Relaxing the Square Integrability Condition

  • INTELLECTUAL CONTROL SYSTEMS, DATA ANALYSIS
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

This study deals with relaxing the regressor square integrability condition \(\omega (t)\notin \mathrm {L}_{2} \) in the DREM procedure so as to ensure the monotone asymptotic convergence of the parametric error in the problem of estimating constant parameters of a linear regression dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The filter is an integrator with exponential reduction of the contribution of new terms, and hence we refer to the procedure obtained in this paper as I-DREM.

REFERENCES

  1. Chowdhary, G., Yucelen, T., Muhlegg, M., and Johnson, E., Concurrent learning adaptive control of linear systems with exponentially convergent bounds, Int. J. Adaptive Control Signal Process., 2013, vol. 27, no. 4, pp. 280–301.

    Article  MathSciNet  Google Scholar 

  2. Adetola, V. and Guay, M., Finite-time parameter estimation in adaptive control of nonlinear systems, IEEE Trans. Autom. Control, 2008, vol. 53, no. 3, pp. 807–811.

    Article  Google Scholar 

  3. Wang, J., Aranovskiy, S.V., Bobtsov, A.A., Pyrkin, A.A., and Kolyubin, S.A., A method to provide conditions for sustained excitation, Autom. Remote Control, 2018, vol. 79, no. 2, pp. 258–264.

    Article  MathSciNet  Google Scholar 

  4. Roy, S.B., Bhasin, S., and Kar, I.N., Combined MRAC for unknown MIMO LTI systems with parameter convergence, IEEE Trans. Autom. Control, 2017, vol. 63, no. 1, pp. 283–290.

    Article  MathSciNet  Google Scholar 

  5. Aranovskiy, S., Bobtsov, A., Ortega, R., and Pyrkin, A., Performance enhancement of parameter estimators via dynamic regressor extension and mixing, IEEE Trans. Autom. Control, 2016, vol. 62, no. 7, pp. 3546–3550.

    Article  MathSciNet  Google Scholar 

  6. Aranovskiy, S., Belov, A., Ortega, R., Barabanov, N., and Bobtsov, A., Parameter identification of linear time-invariant systems using dynamic regressor extension and mixing, Int. J. Adaptive Control Signal Process., 2019, vol. 33, no. 6, pp. 1016–1030.

    Article  MathSciNet  Google Scholar 

  7. Ortega, R., Nikiforov, V., and Gerasimov, D., On modified parameter estimators for identification and adaptive control. A unified framework and some new schemes, Annu. Rev. Control, 2020, vol. 50, pp. 1–16.

    Article  MathSciNet  Google Scholar 

  8. Glushchenko, A., Petrov, V., and Lastochkin, K., Robust method to provide exponential convergence of model parameters solving LTI plant identification problem, arXiv Preprint, 2020, pp. 1–18. .

  9. Gerasimov, D., Ortega, R., and Nikiforov, V., Adaptive control of multivariable systems with reduced knowledge of high frequency gain: application of dynamic regressor extension and mixing estimators, IFAC-PapersOnLine, 2018, vol. 51, no. 15, pp. 886–890.

    Article  Google Scholar 

  10. Pyrkin, A., Bobtsov, A., Ortega, R., Vedyakov, A., and Aranovskiy, S., Adaptive state observers using dynamic regressor extension and mixing, Syst. & Control Lett., 2019, vol. 133, no. 11, pp. 1–8.

    MathSciNet  MATH  Google Scholar 

  11. Ortega, R., Aranovskiy, S., Pyrkin, A., Astolfi, A., and Bobtsov, A., New results on parameter estimation via dynamic regressor extension and mixing: continuous and discrete-time cases, IEEE Trans. Autom. Control, 2020, pp. 1–8.

  12. Lion, P.M., Rapid identification of linear and nonlinear systems, AIAA J., 1967, vol. 5, no. 10, pp. 1835–1842.

    Article  Google Scholar 

  13. Kreisselmeier, G., Adaptive observers with exponential rate of convergence, IEEE Trans. Autom. Control, 1977, vol. 22, no. 1, pp. 2–8.

    Article  MathSciNet  Google Scholar 

  14. Yi, B. and Ortega, R., Conditions for convergence of dynamic regressor extension and mixing parameter estimator using LTI filters, arXiv Preprint, 2020, pp. 1–6. .

  15. Korotina, M., Aranovskiy, S., Ushirobira, R., and Vedyakov, A., On parameter tuning and convergence properties of the DREM procedure, ECC 18th Eur. Control Conf., 2020, pp. 1–7.

  16. Khalil, H.K. and Grizzle, J.W., Nonlinear Systems, Englewood Cliffs, N.J.: Prentice-Hall, 2002.

    Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, project no. 18-47-310003 r_a.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Glushchenko, V. A. Petrov or K. A. Lastochkin.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glushchenko, A.I., Petrov, V.A. & Lastochkin, K.A. I-DREM: Relaxing the Square Integrability Condition. Autom Remote Control 82, 1233–1247 (2021). https://doi.org/10.1134/S0005117921070079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0005117921070079

Keywords

Navigation