Skip to main content
Log in

Carbon nanotube-based CMOS transistors and integrated circuits

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Over the last sixty years, the scaling of silicon-based complementary metal-oxide-semiconductor (CMOS) field-effect transistors (FETs) have promoted the rapid development of microelectronic technology. However, the development of Si CMOS technology is currently subject to serious challenges from various aspects such as physics limit, cost, and power consumption, and is becoming increasingly difficult. Material innovation is exerting an ever-greater role in the integrated circuit design. By looking for thinner semiconductor materials with higher mobility as the active layer to construct smaller and higher-performance transistors, it is possible to further stimulate transistors and integrated circuits on performance, density, power dissipation, and functions. In 1991, Iijima discovered carbon nanotubes (CNTs). Due to its excellent electrical properties and intrinsic nano-scale size, CNT has been considered by academia and industry to have great potential to replace silicon materials in the future for the extremely scaled technology nodes or novel electronic applications. This paper reviews the latest advancements in CNT-based electronics research. Finally, the challenges and pathways for nanotube transistors to transition into commercial applications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kilby J S C. Turning potential into realities: the invention of the integrated circuit (Nobel lecture). ChemPhysChem, 2001, 2: 482–489

    Article  Google Scholar 

  2. Bardeen J, Brattain W H. The transistor, a semi-conductor triode. Phys Rev, 1948, 74: 230–231

    Article  Google Scholar 

  3. Cavin R K, Lugli P, Zhirnov V V. Science and engineering beyond Moore’s law. Proc IEEE, 2012, 100: 1720–1749

    Article  Google Scholar 

  4. Waldrop M M. The chips are down for Moore’s law. Nature, 2016, 530: 144–147

    Article  Google Scholar 

  5. Avouris P, Chen J. Nanotube electronics and optoelectronics. Mater Today, 2006, 9: 46–54

    Article  Google Scholar 

  6. Rutherglen C, Jain D, Burke P. Nanotube electronics for radiofrequency applications. Nat Nanotech, 2009, 4: 811–819

    Article  Google Scholar 

  7. Peng L M, Zhang Z Y, Wang S. Carbon nanotube electronics: recent advances. Mater Today, 2014, 17: 433–442

    Article  Google Scholar 

  8. Chen Z H, Wong H S P, Mitra S, et al. Carbon nanotubes for high-performance logic. MRS Bull, 2014, 39: 719–726

    Article  Google Scholar 

  9. Sun J Y C. System scaling for intelligent ubiquitous computing. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2017. 1–7

  10. Franklin A D. Nanomaterials in transistors: from high-performance to thin-film applications. Science, 2015, 349: aab2750

    Article  Google Scholar 

  11. Zhang H, Xiang L, Yang Y, et al. High-performance carbon nanotube complementary electronics and integrated sensor systems on ultrathin plastic foil. ACS Nano, 2018, 12: 2773–2779

    Article  Google Scholar 

  12. Xiang L, Zhang H, Dong G, et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat Electron, 2018, 1: 237–245

    Article  Google Scholar 

  13. Xiang L, Xia F, Zhang H, et al. Wafer-scale high-yield manufacturing of degradable electronics for environmental monitoring. Adv Funct Mater, 2019, 29: 1905518

    Article  Google Scholar 

  14. Cao Q, Kim H, Pimparkar N, et al. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature, 2008, 454: 495–500

    Article  Google Scholar 

  15. Sun Y, Wang B W, Hou P X, et al. A carbon nanotube non-volatile memory device using a photoresist gate dielectric. Carbon, 2017, 124: 700–707

    Article  Google Scholar 

  16. Qu T Y, Sun Y, Chen M L, et al. A flexible carbon nanotube sen-memory device. Adv Mater, 2020, 32: 1907288

    Article  Google Scholar 

  17. Yu W J, Chae S H, Lee S Y, et al. Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater, 2011, 23: 1889–1893

    Article  Google Scholar 

  18. Louarn A L, Kapche F, Bethoux J M, et al. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors. Appl Phys Lett, 2007, 90: 233108

    Article  Google Scholar 

  19. Bethoux J M, Happy H, Dambrine G, et al. An 8-GHz f/sub t/carbon nanotube field-effect transistor for gigahertz range applications. IEEE Electron Device Lett, 2006, 27: 681–683

    Article  Google Scholar 

  20. Chen Y Y, Sun Y, Zhu Q B, et al. High-throughput fabrication of flexible and transparent all-carbon nanotube electronics. Adv Sci, 2018, 5: 1700965

    Article  Google Scholar 

  21. Yamada T, Hayamizu Y, Yamamoto Y, et al. A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotech, 2011, 6: 296–301

    Article  Google Scholar 

  22. Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9: 5929–5936

    Article  Google Scholar 

  23. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56–58

    Article  Google Scholar 

  24. Chau R, Datta S, Doczy M, et al. Benchmarking nanotechnology for high-performance and low-power logic transistor applications. IEEE Trans Nanotechnol, 2005, 4: 153–158

    Article  Google Scholar 

  25. Zhou X J, Park J Y, Huang S M, et al. Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys Rev Lett, 2005, 95: 146805

    Article  Google Scholar 

  26. Perebeinos V, Tersoff J, Avouris P. Electron-phonon interaction and transport in semiconducting carbon nanotubes. Phys Rev Lett, 2005, 94: 086802

    Article  Google Scholar 

  27. Purewal M S, Hong B H, Ravi A, et al. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys Rev Lett, 2007, 98: 186808

    Article  Google Scholar 

  28. Perebeinos V, Rotkin S V, Petrov A G, et al. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Nano Lett, 2009, 9: 312–316

    Article  Google Scholar 

  29. Park J Y, Rosenblatt S, Yaish Y, et al. Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett, 2004, 4: 517–520

    Article  Google Scholar 

  30. Tulevski G S, Franklin A D, Frank D, et al. Toward high-performance digital logic technology with carbon nanotubes. ACS Nano, 2014, 8: 8730–8745

    Article  Google Scholar 

  31. Cao Q. Carbon nanotube transistor technology for More-Moore scaling. Nano Res, 2021. doi: https://doi.org/10.1007/s12274-021-3459-z

  32. Peng L M, Zhang Z, Qiu C. Carbon nanotube digital electronics. Nat Electron, 2019, 2: 499–505

    Article  Google Scholar 

  33. Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52

    Article  Google Scholar 

  34. Martel R, Schmidt T, Shea H R, et al. Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73: 2447–2449

    Article  Google Scholar 

  35. Zhang Z, Liang X, Wang S, et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett, 2007, 7: 3603–3607

    Article  Google Scholar 

  36. Zhang Z, Wang S, Wang Z, et al. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano, 2009, 3: 3781–3787

    Article  Google Scholar 

  37. Qiu C, Zhang Z, Xiao M, et al. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science, 2017, 355: 271–276

    Article  Google Scholar 

  38. Zhang P, Qiu C, Zhang Z, et al. Performance projections for ballistic carbon nanotube FinFET at circuit level. Nano Res, 2016, 9: 1785–1794

    Article  Google Scholar 

  39. Natarajan S, Agostinelli M, Akbar S, et al. A 14 nm logic technology featuring 2nd-generation FinFET, air-gapped interconnects, self-aligned double patterning and a 0.0588 µm 2 SRAM cell size. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2014. 1–3

  40. Franklin A D, Chen Z. Length scaling of carbon nanotube transistors. Nat Nanotech, 2010, 5: 858–862

    Article  Google Scholar 

  41. Qiu C, Liu F, Xu L, et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science, 2018, 361: 387–392

    Article  Google Scholar 

  42. Aly M M S, Gao M, Hills G, et al. Energy-efficient abundant-data computing: the N3XT 1,000x. Computer, 2015, 48: 24–33

    Article  Google Scholar 

  43. Shulaker M M, Hills G, Park R S, et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature, 2017, 547: 74–78

    Article  Google Scholar 

  44. Fleetwood D M. Evolution of total ionizing dose effects in MOS devices with Moore’s law scaling. IEEE Trans Nucl Sci, 2018, 65: 1465–1481

    Article  Google Scholar 

  45. Barnaby H J. Total-ionizing-dose effects in modern CMOS technologies. IEEE Trans Nucl Sci, 2006, 53: 3103–3121

    Article  Google Scholar 

  46. Zhu M, Xiao H, Yan G, et al. Radiation-hardened and repairable integrated circuits based on carbon nanotube transistors with ion gel gates. Nat Electron, 2020, 3: 622–629

    Article  Google Scholar 

  47. Flament O, Torres A, Ferlet-Cavrois V. Bias dependence of FD transistor response to total dose irradiation. IEEE Trans Nucl Sci, 2003, 50: 2316–2321

    Article  Google Scholar 

  48. Ding L, Liang S, Pei T, et al. Carbon nanotube based ultra-low voltage integrated circuits: scaling down to 0.4 V. Appl Phys Lett, 2012, 100: 263116

    Article  Google Scholar 

  49. Nikonov D E, Young I A. Uniform methodology for benchmarking beyond-CMOS logic devices. In: Proceedings of International Electron Devices Meeting, 2012. 1–4

  50. Gonzalez R, Horowitz M. Energy dissipation in general purpose microprocessors. IEEE J Solid-State Circ, 1996, 31: 1277–1284

    Article  Google Scholar 

  51. Hills G, Bardon M G, Doornbos G, et al. Understanding energy efficiency benefits of carbon nanotube field-effect transistors for digital VLSI. IEEE Trans Nanotechnol, 2018, 17: 1259–1269

    Article  Google Scholar 

  52. Chen B, Zhang P, Ding L, et al. Highly uniform carbon nanotube field-effect transistors and medium scale integrated circuits. Nano Lett, 2016, 16: 5120–5128

    Article  Google Scholar 

  53. Yang Y, Ding L, Han J, et al. High-performance complementary transistors and medium-scale integrated circuits based on carbon nanotube thin films. ACS Nano, 2017, 11: 4124–4132

    Article  Google Scholar 

  54. Zhong D, Zhang Z, Ding L, et al. Gigahertz integrated circuits based on carbon nanotube films. Nat Electron, 2018, 1: 40–45

    Article  Google Scholar 

  55. Yang S, Ahmed S, Arcot B, et al. A high performance 180 nm generation logic technology. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 1998. 197–200

  56. Shulaker M M, Hills G, Patil N, et al. Carbon nanotube computer. Nature, 2013, 501: 526–530

    Article  Google Scholar 

  57. Hills G, Lau C, Wright A, et al. Modern microprocessor built from complementary carbon nanotube transistors. Nature, 2019, 572: 595–602

    Article  Google Scholar 

  58. Guo J, Hasan S, Javey A, et al. Assessment of high-frequency performance potential of carbon nanotube transistors. IEEE Trans Nanotechnol, 2005, 4: 715–721

    Article  Google Scholar 

  59. Wang C, Badmaev A, Jooyaie A, et al. Radio frequency and linearity performance of transistors using high-purity semiconducting carbon nanotubes. ACS Nano, 2011, 5: 4169–4176

    Article  Google Scholar 

  60. Zhong D, Shi H, Ding L, et al. Carbon nanotube film-based radio frequency transistors with maximum oscillation frequency above 100 GHz. ACS Appl Mater Interfaces, 2019, 11: 42496–42503

    Article  Google Scholar 

  61. Liu L, Ding L, Zhong D, et al. Carbon nanotube complementary gigahertz integrated circuits and their applications on wireless sensor interface systems. ACS Nano, 2019, 13: 2526–2535

    Google Scholar 

  62. Liang Y, Xiao M, Wu D, et al. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers. ACS Nano, 2020, 14: 8866–8874

    Article  Google Scholar 

  63. Xiao M, Liang S, Han J, et al. Batch fabrication of ultrasensitive carbon nanotube hydrogen sensors with sub-ppm detection limit. ACS Sens, 2018, 3: 749–756

    Article  Google Scholar 

  64. Hu Y, Kang L, Zhao Q, et al. Growth of high-density horizontally aligned SWNT arrays using Trojan catalysts. Nat Commun, 2015, 6: 6099

    Article  Google Scholar 

  65. Si J, Zhong D, Xu H, et al. Scalable preparation of high-density semiconducting carbon nanotube arrays for high-performance field-effect transistors. ACS Nano, 2018, 12: 627–634

    Article  Google Scholar 

  66. Qiu S, Wu K, Gao B, et al. Solution-processing of high-purity semiconducting single-walled carbon nanotubes for electronics devices. Adv Mater, 2019, 31: 1800750

    Article  Google Scholar 

  67. Brady G J, Way A J, Safron N S, et al. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci Adv, 2016, 2: e1601240

    Article  Google Scholar 

  68. Léonard F. Crosstalk between nanotube devices: contact and channel effects. Nanotechnology, 2006, 17: 2381–2385

    Article  Google Scholar 

  69. Cao Q, Han S, Tulevski G S, et al. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat Nanotech, 2013, 8: 180–186

    Article  Google Scholar 

  70. He X, Gao W, Xie L, et al. Wafer-scale monodomain films of spontaneously aligned single-walled carbon nanotubes. Nat Nanotech, 2016, 11: 633–638

    Article  Google Scholar 

  71. Liu L, Han J, Xu L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics. Science, 2020, 368: 850–856

    Article  Google Scholar 

  72. Radosavljević M, Heinze S, Tersoff J, et al. Drain voltage scaling in carbon nanotube transistors. Appl Phys Lett, 2003, 83: 2435–2437

    Article  Google Scholar 

  73. Liu L, Zhao C, Ding L, et al. Drain-engineered carbon-nanotube-film field-effect transistors with high performance and ultra-low current leakage. Nano Res, 2020, 13: 1875–1881

    Article  Google Scholar 

  74. Zhao C, Zhong D, Liu L, et al. Strengthened complementary metal-oxide-semiconductor logic for small-band-gap semiconductor-based high-performance and low-power application. ACS Nano, 2020, 14: 15267–15275

    Article  Google Scholar 

  75. Subramanian S, Hosseini M, et al. First monolithic integration of 3D complementary FET (CFET) on 300 mm wafers. In: Proceedings of IEEE Symposium on VLSI Technology, 2020. 20210682

  76. Shulaker M M, Wu T F, Pal A, et al. Monolithic 3D integration of logic and memory: carbon nanotube FETs, resistive RAM, and silicon FETs. In: Proceedings of IEEE International Electron Devices Meeting, 2014. 14933690

  77. Liu Y, Zhang J, Peng L M. Three-dimensional integration of plasmonics and nanoelectronics. Nat Electron, 2018, 1: 644–651

    Article  Google Scholar 

  78. Chang S W, Sung P J, Chu T Y, et al. First demonstration of CMOS inverter and 6T-SRAM based on GAA CFETs structure for 3D-IC applications. In: Proceedings of IEEE International Electron Devices Meeting (IEDM), 2019. 19359374

  79. Zhao Y, Li Q, Xiao X, et al. Three-dimensional flexible complementary metal-oxide-semiconductor logic circuits based on two-layer stacks of single-walled carbon nanotube networks. ACS Nano, 2016, 10: 2193–2202

    Article  Google Scholar 

  80. Wu T F, Li H, Huang P C, et al. Hyperdimensional computing exploiting carbon nanotube FETs, resistive RAM, and their monolithic 3D integration. IEEE J Solid-State Circ, 2018, 53: 3183–3196

    Article  Google Scholar 

  81. Honda W, Harada S, Ishida S, et al. High-performance, mechanically flexible, and vertically integrated 3D carbon nanotube and InGaZnO complementary circuits with a temperature sensor. Adv Mater, 2015, 27: 4674–4680

    Article  Google Scholar 

  82. Xie Y N, Zhong D L, Fan C W, et al. Highly temperature-stable carbon nanotube transistors and gighertz integrated circuits for cryogenic electronics. Adv Electron Mater, 2021. doi: https://doi.org/10.1002/aelm.202100202

  83. Cao Q, Han S J, Tulevski G S, et al. Evaluation of field-effect mobility and contact resistance of transistors that use solution-processed single-walled carbon nanotubes. ACS Nano, 2012, 6: 6471–6477

    Article  Google Scholar 

  84. Noyce S G, Doherty J L, Cheng Z, et al. Electronic stability of carbon nanotube transistors under long-term bias stress. Nano Lett, 2019, 19: 1460–1466

    Article  Google Scholar 

  85. Liang S, Zhang Z, Pei T, et al. Reliability tests and improvements for Sc-contacted N-type carbon nanotube transistors. Nano Res, 2013, 6: 535–545

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research & Development Program (Grant No. 2016YFA0201901) and Beijing Municipal Science and Technology Commission (Grant No. Z181100004418011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Zhang, Z. Carbon nanotube-based CMOS transistors and integrated circuits. Sci. China Inf. Sci. 64, 201402 (2021). https://doi.org/10.1007/s11432-021-3271-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3271-8

Keywords

Navigation