Skip to main content
Log in

The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Various forms of muscle unloading can be found in patients with prolonged bed rest, with strokes and spinal lesions, during muscle immobilization in traumatology, under zero gravity, etc. During unloading, postural muscles (for example, m. soleus) are mainly affected. The rearrangement of skeletal muscles during unloading is based on their atrophy due to an increase in proteolysis and a decrease in the intensity of protein synthesis [1, 2]. The review is devoted to the study of the role of histone deacetylases I and IIa (HDAC1, HDAC4/5), as well as the p38 MAPK signaling pathway, in the activation of FoxO and myogenin transcription factors involved in the expression of atrogin-1 and MuRF-1 genes encoding E3 ubiquitin ligases under skeletal muscle unloading conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin-1. Am J Physiol Endocrinol Metab 307 (6):E469-484. https://doi.org/10.1152/ajpendo.00204.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baehr LM, West DWD, Marshall AG, Marcotte GR, Baar K, Bodine SC (2017) Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. J Appl Physiol 122 (5):1336-1350. https://doi.org/10.1152/japplphysiol.00703.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses to altered physical activity paradigms. Am J Phys Med Rehabil 81 (11 Suppl):S40-S51. https://doi.org/10.1097/01.PHM.0000029723.36419.0D

    Article  PubMed  Google Scholar 

  4. Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment invited review: microgravity and skeletal muscle. J Appl Physiol 89 (2):823-839. https://doi.org/10.1152/jappl.2000.89.2.823

    Article  CAS  PubMed  Google Scholar 

  5. Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146: 159-216. https://doi.org/10.1007/s10254-002-0004-7

    Article  CAS  PubMed  Google Scholar 

  6. Glass DJ (2003) Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5 (2):87-90. https://doi.org/10.1038/ncb0203-87

    Article  CAS  PubMed  Google Scholar 

  7. Jackman RW, Kandarian SC (2004) The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 287 (4):C834-C843. https://doi.org/10.1152/ajpcell.00579.2003

    Article  CAS  PubMed  Google Scholar 

  8. Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela DM, Gartner C, Latres E, Goldberg AL (2009) During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J Cell Biol 185 (6):1083-1095. https://doi.org/10.1083/jcb.200901052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baldwin KM, Herrick RE, Ilyina-Kakueva E, Oganov VS (1990) Effects of zero gravity on myofibril content and isomyosin distribution in rodent skeletal muscle. FASEB J 4 (1):79-83. https://doi.org/10.1096/fasebj.4.1.2136840

    Article  CAS  PubMed  Google Scholar 

  10. Solomon V, Goldberg AL (1996) Importance of the ATP-ubiquitin-proteasome pathway in the degradation of soluble and myofibrillar proteins in rabbit muscle extracts. J Biol Chem 271 (43):26690-26697. https://doi.org/10.1074/jbc.271.43.26690

    Article  CAS  PubMed  Google Scholar 

  11. Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ (2007) The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle. Cell Metab 6 (5):376-385. https://doi.org/10.1016/j.cmet.2007.09.009

    Article  CAS  PubMed  Google Scholar 

  12. Attaix D, Baracos VE (2010) MAFbx/Atrogin-1 expression is a poor index of muscle proteolysis. Curr Opin Clin Nutr Metab Care 13 (3):223-224. https://doi.org/10.1097/MCO.0b013e328338b9a6

    Article  PubMed  Google Scholar 

  13. Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ (2001) Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294 (5547):1704-1708. https://doi.org/10.1126/science.1065874

    Article  CAS  Google Scholar 

  14. Kachaeva EV, Shenkman BS (2012) Various jobs of proteolytic enzymes in skeletal muscle during unloading: facts and speculations. J Biomed Biotechnol 2012:493618. https://doi.org/10.1155/2012/493618)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117 (3):399-412. https://doi.org/10.1016/s0092-8674(04)00400-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shenkman BS, Belova SP, Lomonosova YN, Kostrominova TY, Nemirovskaya TL (2015) Calpain-dependent regulation of the skeletal muscle atrophy following unloading. Arch Biochem Biophys 584:36-41. https://doi.org/10.1016/j.abb.2015.07.011

    Article  CAS  PubMed  Google Scholar 

  17. Belova SP, Shenkman BS, Kostrominova TY, Nemirovskaya TL (2017) Paradoxical effect of IKKbeta inhibition on the expression of E3 ubiquitin ligases and unloading-induced skeletal muscle atrophy. Physiol Rep 5 (16):e13291. https://doi.org/10.14814/phy2.13291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. McGee SL, Hargreaves M (2010) Histone modifications and skeletal muscle metabolic gene expression. Clin Exp Pharmacol Physiol 37 (3):392-396. https://doi.org/10.1111/j.1440-1681.2009.05311.x

    Article  CAS  PubMed  Google Scholar 

  19. Gaur V, Connor T, Sanigorski A, Martin SD, Bruce CR, Henstridge DC, Bond ST, McEwen KA, Kerr-Bayles L, Ashton TD, Fleming C, Wu M, Pike Winer LS, Chen D, Hudson GM, Schwabe JWR, Baar K, Febbraio MA, Gregorevic P, Pfeffer FM, Walder KR, Hargreaves M, McGee SL (2016) Disruption of the Class IIa HDAC Corepressor Complex Increases Energy Expenditure and Lipid Oxidation. Cell Rep 16 (11):2802-2810. https://doi.org/10.1016/j.celrep.2016.08.005

    Article  CAS  PubMed  Google Scholar 

  20. Astratenkova IV, Rogozkin VA (2016) Signaling Pathways Involved in the Regulation of Protein Metabolism in Skeletal Muscle. Russ J Physiol 102 (7):753-772. (In Russ).

    CAS  Google Scholar 

  21. Astratenkova IV, Rogozkin VA (2017) The role of acetylation /deacetylation of histones and transcription factors in the regulation of skeletal muscle metabolism. Russ J Physiol 103 (6):593-605. (In Russ).

    Google Scholar 

  22. Liu Y, Shen T, Randall WR, Schneider MF (2005) Signaling pathways in activity-dependent fiber type plasticity in adult skeletal muscle. J Muscle Res Cell Motil 26 (1):13-21. https://doi.org/10.1007/s10974-005-9002-0

    Article  CAS  PubMed  Google Scholar 

  23. Shenkman BS, Nemirovskaya TL (2008) Calcium-dependent signaling mechanisms and soleus fiber remodeling under gravitational unloading. J Muscle Res Cell Motil 29 (6-8):221-230. https://doi.org/10.1007/s10974-008-9164-7

    Article  CAS  PubMed  Google Scholar 

  24. Brocca L, Toniolo L, Reggiani C, Bottinelli R, Sandri M, Pellegrino MA (2017) FoxO-dependent atrogenes vary among catabolic conditions and play a key role in muscle atrophy induced by hindlimb suspension. J Physiol 595 (4):1143-1158. https://doi.org/10.1113/JP273097

    Article  CAS  PubMed  Google Scholar 

  25. Beharry AW, Sandesara PB, Roberts BM, Ferreira LF, Senf SM, Judge AR (2014) HDAC1 activates FoxO and is both sufficient and required for skeletal muscle atrophy. J Cell Sci 127 (Pt 7):1441-1453. https://doi.org/10.1242/jcs.136390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peris-Moreno D, Taillandier D, Polge C (2020) MuRF1/TRIM63, Master Regulator of Muscle Mass. Int J Mol Sci 21 (18):6663. https://doi.org/10.3390/ijms21186663

    Article  CAS  PubMed Central  Google Scholar 

  27. Bertaggia E, Coletto L, Sandri M (2012) Posttranslational modifications control FoxO3 activity during denervation. Am J Physiol Cell Physiol 302 (3):C587-C596. https://doi.org/10.1152/ajpcell.00142.2011

    Article  CAS  PubMed  Google Scholar 

  28. Mochalova EP, Belova SP, Mirzoev TM, Shenkman BS, Nemirovskaya TL (2019) Atrogin-1/MAFbx mRNA expression is regulated by histone deacetylase 1 in rat soleus muscle under hindlimb unloading. Sci Rep 9 (1):10263. https://doi.org/10.1038/s41598-019-46753-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Senf SM, Sandesara PB, Reed SA, Judge AR (2011) p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 300 (6):C1490-C1501. https://doi.org/10.1152/ajpcell.00255.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN (2010) Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143 (1):35-45. https://doi.org/10.1016/j.cell.2010.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tang H, Inoki K, Lee M, Wright E, Khuong A, Khuong A, Sugiarto S, Garner M, Paik J, DePinho RA, Goldman D, Guan KL, Shrager JB (2014) mTORC1 promotes denervation-induced muscle atrophy through a mechanism involving the activation of FoxO and E3 ubiquitin ligases. Sci Signal 7 (314):ra18. https://doi.org/10.1126/scisignal.2004809

    Article  CAS  PubMed  Google Scholar 

  32. Dupre-Aucouturier S, Castells J, Freyssenet D, Desplanches D (2015) Trichostatin A, a histone deacetylase inhibitor, modulates unloaded-induced skeletal muscle atrophy. J Appl Physiol 119 (4):342-351. https://doi.org/10.1152/japplphysiol.01031.2014

    Article  CAS  PubMed  Google Scholar 

  33. Mochalova EP, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL (2020) Differences in the Role of HDACs 4 and 5 in the Modulation of Processes Regulating MAFbx and MuRF1 Expression during Muscle Unloading. Int J Mol Sci 21 (13):4815. https://doi.org/10.3390/ijms21134815

    Article  CAS  PubMed Central  Google Scholar 

  34. Du Bois P, Pablo Tortola C, Lodka D, Kny M, Schmidt F, Song K, Schmidt S, Bassel-Duby R, Olson EN, Fielitz J (2015) Angiotensin II Induces Skeletal Muscle Atrophy by Activating TFEB-Mediated MuRF1 Expression. Circ Res 117 (5):424-436. https://doi.org/10.1161/CIRCRESAHA.114.305393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Xia Y (2012) Assessing developmental roles of MKK4 and MKK7 in vitro. Commun Integr Biol 5 (4):319-324. https://doi.org/10.4161/cib.20216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, Graves LM (2005) Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol 99 (6):2181-2188. https://doi.org/10.1152/japplphysiol.00743.2005

    Article  CAS  PubMed  Google Scholar 

  37. Dupont E, Cieniewski-Bernard C, Bastide B, Stevens L (2011) Electrostimulation during hindlimb unloading modulates PI3K-AKT downstream targets without preventing soleus atrophy and restores slow phenotype through ERK. Am J Physiol Regul Integr Comp Physiol 300 (2):R408-R417. https://doi.org/10.1152/ajpregu.00793.2009

    Article  CAS  PubMed  Google Scholar 

  38. Sharlo KA, Mochalova EP, Belova SP, Lvova ID, Nemirovskaya TL, Shenkman BS (2020) The role of MAP-kinase p38 in the m. soleus slow myosin mRNA transcription regulation during short-term functional unloading. Arch Biochem Biophys 695:108622. https://doi.org/10.1016/j.abb.2020.108622

    Article  CAS  PubMed  Google Scholar 

  39. Belova SP, Mochalova EP, Kostrominova TY, Shenkman BS, Nemirovskaya TL (2020) P38alpha-MAPK Signaling Inhibition Attenuates Soleus Atrophy during Early Stages of Muscle Unloading. Int J Mol Sci 21 (8):2756. https://doi.org/10.3390/ijms21082756

    Article  CAS  PubMed Central  Google Scholar 

  40. Kawamoto E, Koshinaka K, Yoshimura T, Masuda H, Kawanaka K (2016) Immobilization rapidly induces muscle insulin resistance together with the activation of MAPKs (JNK and p38) and impairment of AS160 phosphorylation. Physiol Rep 4 (15):e12876. https://doi.org/10.14814/phy2.12876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yuasa K, Okubo K, Yoda M, Otsu K, Ishii Y, Nakamura M, Itoh Y, Horiuchi K (2018) Targeted ablation of p38alpha MAPK suppresses denervation-induced muscle atrophy. Sci Rep 8 (1):9037. https://doi.org/10.1038/s41598-018-26632-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Clavel S, Siffroi-Fernandez S, Coldefy AS, Boulukos K, Pisani DF, Derijard B (2010) Regulation of the intracellular localization of Foxo3a by stress-activated protein kinase signaling pathways in skeletal muscle cells. Mol Cell Biol 30 (2):470-480. https://doi.org/10.1128/MCB.00666-09

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic research (grant No. 20-015-00138) and Russian Science Foundation (grant No. 18-15-00062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Nemirovskaya.

Ethics declarations

CONFLICT OF INTEREST

The authors assure that they have no evident or potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 773–784https://doi.org/10.31857/S086981392106008X.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemirovskaya, T.L. The Role of Histone Deacetylases I and IIa (HDAC1, HDAC4/5) and the MAPK38 Signaling Pathway in the Regulation of Atrophic Processes under Skeletal Muscle Unloading. J Evol Biochem Phys 57, 876–885 (2021). https://doi.org/10.1134/S0022093021040116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040116

Keywords:

Navigation