Skip to main content
Log in

Molecular and Functional Heterogeneity of Na,K-ATPase in the Skeletal Muscle

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Na,K-ATPase activity is critical for maintaining electrogenesis, contractile function and skeletal muscle performance. This review is devoted to the analysis of the results of recent studies in the field of molecular and functional diversity of Na,K-ATPase in skeletal muscles, which co-express α1 and α2 isoforms of the catalytic and transport Na,K-ATPase α subunit. The issues that seem to be most promising in terms of their further development are considered. The available facts indicate that, in contrast to the α1 isoform that demonstrates functional stability, the α2 isoform is distinguished by a high degree of plasticity, which is due to its specific membrane localization, functional and molecular interactions with the protein and lipid environment, as well as the peculiarities of its regulation by various factors. Functional disorders of the Na,K-ATPase α2 isoform are among the most common signs characteristic of both chronic and short-term forms of motor dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Sejersted OM, Sjogaard G (2000) Dynamics and consequences of potassium shifts in skeletal muscle and heart during exercise. Physiol Rev 80:1411–1481. https://doi.org/10.1152/physrev.2000.80.4.1411

    Article  CAS  PubMed  Google Scholar 

  2. Clausen T (2003) Na+-K+ pump regulation and skeletal muscle contractility. Physiol Rev 83:1269–1324. https://doi.org/10.1152/physrev.00011.2003

    Article  CAS  PubMed  Google Scholar 

  3. Clausen T (2013) Quantification of Na+,K+ pumps and their transport rate in skeletal muscle: Functional significance. J Gen Physiol 142:327–345. https://doi.org/10.1085/jgp.201310980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Clausen T (2015) Excitation of skeletal muscle is a self-limiting process, due to run-down of Na+,K+ gradients, recoverable by stimulation of the Na+,K+ pumps. Physiol Rep 3(4):e12373. https://doi.org/10.14814/phy2.12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DiFranco M, Hakimjavadi H, Lingrel JB, Heiny JA (2015) Na,K-ATPase α2 activity in mammalian skeletal muscle T-tubules is acutely stimulated by extracellular K+. J Gen Physiol 146:281–294. https://doi.org/10.1085/jgp.201511407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matyushkin DP, Krivoi II, Drabkina TM (1995) Synaptic feed-backs mediated by potassium ions. Gen Physiol Biophys 14:369–381.

    CAS  PubMed  Google Scholar 

  7. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401. https://doi.org/10.1016/0006-3002(57)90343-8

    Article  CAS  Google Scholar 

  8. Blanco G, Mercer RW (1998) Isozymes of the Na-K-ATPase: Heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F655. https://doi.org/10.1152/ajprenal.1998.275.5.F633

    Article  CAS  PubMed  Google Scholar 

  9. Mijatovic T, Van Quaquebeke E, Delest B, Debeir O, Darro F, Kiss R (2007) Cardiotonic steroids on the road to anti-cancer therapy. Biochim Biophys Acta 1776:32–57. https://doi.org/10.1016/j.bbcan.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  10. Bagrov AY, Shapiro JI, Fedorova OV (2009) Endogenous cardiotonic steroids: Physiology, pharmacology, and novel therapeutic targets. Pharmacol Rev 61:9–38. https://doi.org/10.1124/pr.108.000711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pirkmajer S, Chibalin AV (2016) Na,K-ATPase regulation in skeletal muscle. Am J Physiol Endocrinol Metab 311(1):E1–E31. https://doi.org/10.1152/ajpendo.00539.2015

    Article  PubMed  Google Scholar 

  12. Clausen MV, Hilbers F, Poulsen H (2017) The Structure and Function of the Na,K-ATPase Isoforms in Health and Disease. Front Physiol 8:371. https://doi.org/10.3389/fphys.2017.00371

    Article  PubMed  PubMed Central  Google Scholar 

  13. Blaustein MP (1993) Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol Cell Physiol 264:C1367–C1387. https://doi.org/10.1152/ajpcell.1993.264.6.C1367

    Article  CAS  Google Scholar 

  14. Lingrel JB (2010) The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase. Annu Rev Physiol 72:395–412. https://doi.org/10.1146/annurev-physiol-021909-135725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blaustein MP, Hamlyn JM (2020) Ouabain, Endogenous Ouabain and Ouabain-like Factors: The Na+ Pump/Ouabain Receptor, its linkage to NCX, and its Myriad Functions. Cell Calcium 86: 102159. https://doi.org/10.1016/j.ceca.2020.102159

    Article  CAS  PubMed  Google Scholar 

  16. Matchkov VV, Krivoi II (2016) Specialized functional diversity and interactions of the Na,K-ATPase. Front Physiol 7:179. https://doi.org/10.3389/fphys.2016.00179

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xie Z, Askari A (2002) Na+/K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439. https://doi.org/10.1046/j.1432-1033.2002.02910.x

    Article  CAS  PubMed  Google Scholar 

  18. Schoner W, Scheiner-Bobis G (2007) Endogenous and exogenous cardiac glycosides and their mechanisms of action. Am J Cardiovasc Drugs 7:173–189. https://doi.org/10.2165/00129784-200707030-00004

    Article  CAS  PubMed  Google Scholar 

  19. Reinhard L, Tidow H, Clausen MJ, Nissen P (2013) Na+,K+-ATPase as a docking station: protein-protein complexes of the Na+,K+-ATPase. Cell Mol Life Sci 70:205–222. https://doi.org/10.1007/s00018-012-1039-9

    Article  CAS  PubMed  Google Scholar 

  20. Cui X, Xie Z (2017) Protein Interaction and Na/K-ATPase-Mediated Signal Transduction. Molecules 22:990. https://doi.org/10.3390/molecules22060990

    Article  CAS  PubMed Central  Google Scholar 

  21. Yu H, Cui X, Zhang J, Xie JX, Banerjee M, Pierre SV, Xie Z (2018) Heterogeneity of signal transduction by Na-K-ATPase alpha-isoforms: role of Src interaction. Am J Physiol Cell Physiol 314:C202–C210. https://doi.org/10.1152/ajpcell.00124.2017

    Article  CAS  PubMed  Google Scholar 

  22. Orlowski J, Lingrel JB (1988) Tissue-specific and developmental regulation of rat Na,K-ATPase catalytic α isoform and β subunit mRNAs. J Biol Chem 263:10436–10442. https://doi.org/10.1016/S0021-9258(19)81535-1

    Article  CAS  PubMed  Google Scholar 

  23. He S, Shelly DA, Moseley AE, James PF, James JH, Paul RJ, Lingrel JB (2001) The α1- and α2-isoforms of Na-K-ATPase play different roles in skeletal muscle contractility. Am J Physiol Regul Integr Comp Physiol 281:R917–R925. https://doi.org/10.1152/ajpregu.2001.281.3.R917

    Article  CAS  PubMed  Google Scholar 

  24. Cherniavsky Lev M, Karlish SJ, Garty H (2015) Cardiac glycosides induced toxicity in human cells expressing α1-, α2-, or α3-isoforms of Na-K-ATPase. Am J Physiol Cell Physiol 309:C126–C135. https://doi.org/10.1152/ajpcell.00089.2015

    Article  CAS  PubMed  Google Scholar 

  25. Radzyukevich TL, Neumann JC, Rindler TN, Oshiro N, Goldhamer DJ, Lingrel JB, Heiny JA (2013) Tissue-specific role of the Na,K-ATPase α2 isozyme in skeletal muscle. J Biol Chem 288:1226–1237. https://doi.org/10.1074/jbc.M112.424663

    Article  CAS  PubMed  Google Scholar 

  26. Kravtsova VV, Petrov AM, Matchkov VV, Bouzinova EV, Vasiliev AN, Benziane B, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2016) Distinct α2 Na,K-ATPase membrane pools are differently involved in early skeletal muscle remodeling during disuse. J Gen Physiol 147:175–188. https://doi.org/10.1085/jgp.201511494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kutz LC, Mukherji ST, Wang X, Bryant A, Larre I, Heiny JA, Lingrel JB, Pierre SV, Xie Z (2018) Isoform-specific role of Na/K-ATPase α1 in skeletal muscle. Am J Physiol Endocrinol Metab 314(6):E620–E629. https://doi.org/10.1152/ajpendo.00275.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krivoi I, Vasiliev A, Kravtsova V, Dobretsov M, Mandel F (2003) Porcine kidney extract contains factor(s) that inhibit the ouabain-sensitive isoform of Na,K-ATPase (α2) in rat skeletal muscle: A convenient electrophysiological assay. Ann NY Acad Sci 986:639–641. https://doi.org/10.1111/j.1749-6632.2003.tb07272.x

    Article  CAS  PubMed  Google Scholar 

  29. Radzyukevich TL, Moseley AE, Shelly DA, Redden GA, Behbehani MM, Lingrel JB, Paul RJ, Heiny JA (2004) The Na,K-ATPase α2 subunit isoform modulates contractility in the perinatal mouse diaphragm. Am J Physiol Cell Physiol 287:C1300–C1310. https://doi.org/10.1152/ajpcell.00231.2004

    Article  CAS  PubMed  Google Scholar 

  30. Heiny JA, Kravtsova VV, Mandel F, Radzyukevich TL, Benziane B, Prokofiev AV, Pedersen SE, Chibalin AV, Krivoi II (2010) The nicotinic acetylcholine receptor and the Na,K-ATPase α2 isoform interact to regulate membrane electrogenesis in skeletal muscle. J Biol Chem 285:28614–28626. https://doi.org/10.1074/jbc.M110.150961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kravtsova VV, Bouzinova EV, Matchkov VV, Krivoi II (2020) Skeletal Muscle Na,K-ATPase as a Target for Circulating Ouabain. Int J Mol Sci 21:2875. https://doi.org/10.3390/ijms21082875

    Article  CAS  PubMed Central  Google Scholar 

  32. Cornelius F, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2015) General and specific lipid-protein interactions in Na,K-ATPase. Biochim Biophys Acta 1848:1729–1743. https://doi.org/10.1016/j.bbamem.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  33. Levitan I, Singh DK, Rosenhouse-Dantsker A (2014) Cholesterol binding to ion channels. Front Physiol 5:65. https://doi.org/10.3389/fphys.2014.00065

    Article  PubMed  PubMed Central  Google Scholar 

  34. Krivoi II, Petrov AM (2019) Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 20:1046. https://doi.org/10.3390/ijms20051046

    Article  CAS  PubMed Central  Google Scholar 

  35. Wyckelsma VL, McKenna MJ (2016) Effects of Age on Na+,K+-ATPase Expression in Human and Rodent Skeletal Muscle. Front Physiol 7:316. https://doi.org/10.3389/fphys.2016.00316.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kravtsova VV, Bouzinova EV, Chibalin AV, Matchkov VV, Krivoi II (2020) Isoform-Specific Na,K-ATPase and Membrane Cholesterol Remodeling in the Motor Endplates in Distinct Mouse Models of Myodystrophy. Am J Physiol Cell Physiol 318:C1030–C1041. https://doi.org/10.1152/ajpcell.00453.2019

    Article  CAS  PubMed  Google Scholar 

  37. Guo Q, Mi X, Sun X, Li X, Fu W, Xu S, Wang Q, Arfat Y, Wang H, Chang H, Gao Y (2017) Remarkable plasticity of Na+,K+-ATPase, Ca2+-ATPase and SERCA contributes to muscle disuse atrophy resistance in hibernating Daurian ground squirrels. Sci Rep 7:10509. https://doi.org/10.1038/s41598-017-10829-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shenkman BS, Kozlovskaya IB (2019) Cellular Responses of Human Postural Muscle to Dry Immersion. Front Physiol 10:187. https://doi.org/10.3389/fphys.2019.00187

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shenkman BS (2020) How Postural Muscle Senses Disuse? Early Signs and Signals. Int J Mol Sci 21:5037. https://doi.org/10.3390/ijms21145037

    Article  CAS  PubMed Central  Google Scholar 

  40. Vilchinskaya NA, Krivoi II, Shenkman BS (2018) AMP-Activated Protein Kinase as a Key Trigger for the Disuse-Induced Skeletal Muscle Remodeling. Int J Mol Sci 19: 3558. https://doi.org/10.3390/ijms19113558

    Article  CAS  PubMed Central  Google Scholar 

  41. Blaustein MP, Chen L, Hamlyn JM, Leenen FH, Lingrel JB, Wier WG, Zhang J (2016) Pivotal role of α2 Na+ pumps and their high affinity ouabain binding site in cardiovascular health and disease. J Physiol 594:6079–6103. https://doi.org/10.1113/JP272419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Vashchinkina EV, Prokofiev AV, Kubasov IV (2006) Role of the Na+,K+-ATPase α2 isoform in the positive inotropic effect of ouabain and marinobufagenin in the rat diaphragm. Biophysics 51:799–804. https://doi.org/10.1134/S0006350906050228

    Article  Google Scholar 

  43. Kotova O, Al-Khalili L, Talia S, Hooke C, Fedorova OV, Bagrov AY, Chibalin AV (2006) Cardiotonic steroids stimulate glycogen synthesis in human skeletal muscle cells via a Src- and ERK1/2-dependent mechanism. J Biol Chem 281:20085–20094. https://doi.org/10.1074/jbc.M601577200

    Article  CAS  PubMed  Google Scholar 

  44. Radzyukevich TL, Lingrel JB, Heiny JA (2009) The cardiac glycoside binding site on the Na,K-ATPase α2 isoform plays a role in the dynamic regulation of active transport in skeletal muscle. Proc Natl Acad Sci USA 106:2565–2570. https://doi.org/10.1073/pnas.0804150106

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pirkmajer S, Bezjak K, Matkovic U, Dolinar K, Jiang LQ, Miš K, Gros K, Milovanova K, Pirkmajer KP, Marš T, Kapilevich L, Chibalin AV (2020) Ouabain Suppresses IL-6/STAT3 Signaling and Promotes Cytokine Secretion in Cultured Skeletal Muscle Cells. Front Physiol 11:566584. https://doi.org/10.3389/fphys.2020.566584

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hazelwood L, Free RB, Cabrera DM, Skinbjerg M, Sibley DR (2008) Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem 283(52): 36441–36453. https://doi.org/10.1074/jbc.M805520200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sibarov DA, Bolshakov AE, Abushik PA, Krivoi II, Antonov SM (2012) Na+,K+-ATPase functionally interacts with the plasma membrane Na+,Ca2+ exchanger to prevent Ca2+ overload and neuronal apoptosis in excitotoxic stress. J Pharmacol Exp Ther 343:596–607. https://doi.org/10.1124/jpet.112.198341

    Article  CAS  PubMed  Google Scholar 

  48. Matos M, Augusto E, Agostinho P, Cunha RA, Chen J-F (2013) Interaction between adenosine A2A receptors and α2 Na,K-ATPase controlling glutamate uptake in astrocytes. J Neurosci 33 (47): 18492–18502. https://doi.org/10.1523/JNEUROSCI.1828-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Illarionava NB, Brismar H, Aperia A, Gunnarson E (2014) Role of Na,K-ATPase α1 and α2 isoforms in the support of astrocyte glutamate uptake. PLoS ONE 9(6): e98469. https://doi.org/10.1371/journal.pone.0098469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Akkuratov EE, Westin L, Vazquez-Juarez E, de Marothy M, Melnikova AK, Blom H, Lindskog M, Brismar H, Aperia A (2020) Ouabain Modulates the Functional Interaction Between Na,K-ATPase and NMDA Receptor. Mol Neurobiol 57(10): 4018–4030. https://doi.org/10.1007/s12035-020-01984-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Krivoi II, Drabkina TM, Kravtsova VV, Vasiliev AN, Eaton MJ, Skatchkov SN, Mandel F (2006) On the functional interaction between nicotinic acetylcholine receptor and Na+,K+-ATPase. Pflugers Arch 452:756–765. https://doi.org/10.1007/s00424-006-0081-6

    Article  CAS  PubMed  Google Scholar 

  52. Vyskocil F, Nikolsky E, Edwards C (1983) An analysis of the mechanisms underlying the non–quantal release of acetylcholine at the mouse neuromuscular junction. Neuroscience 9(2):429–435. https://doi.org/10.1016/0306-4522(83)90305-6

    Article  CAS  PubMed  Google Scholar 

  53. Nikolsky EE, Zemkova H, Voronin VA, Vyskocil F (1994) Role of non-quantal acetylcholine release in surplus polarization of mouse diaphragm fibres at the endplate zone. J Physiol 477:497–502. https://doi.org/10.1113/jphysiol.1994.sp020210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vyskocil F, Malomouzh AI, Nikolsky EE (2009) Non-quantal acetylcholine release at the neuromuscular junction. Physiol Res 58:763–784.

    Article  CAS  Google Scholar 

  55. Chibalin AV, Heiny JA, Benziane B, Prokofiev AV, Vasiliev AN, Kravtsova VV, Krivoi II (2012) Chronic nicotine exposure modifies skeletal muscle Na,K-ATPase activity through its interaction with the nicotinic acetylcholine receptor and phospholemman. PLoS One 7:e33719. https://doi.org/10.1371/journal.pone.0033719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, Heiny JA, Krivoi II (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312:C627–C637. https://doi.org/10.1152/ajpcell.00365.2016

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hezel M, de Groat WC, Galbiati F (2010) Caveolin-3 promotes nicotinic acetylcholine receptor clustering and regulates neuromuscular junction activity. Mol Biol Cell. 21(2):302–310. https://doi.org/10.1091/mbc.E09-05-0381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prince RJ, Sine SM (1999) Acetylcholine and epibatidine binding to muscle acetylcholine receptors distinguish between concerted and uncoupled models. J Biol Chem 274:19623–19629. https://doi.org/10.1074/jbc.274.28.19623

    Article  CAS  PubMed  Google Scholar 

  59. Mourot A, Rodrigo J, Kotzyba-Hibert F, Bertrand S, Bertrand D, Goeldner M (2006) Probing the Reorganization of the Nicotinic Acetylcholine Receptor during Desensitization by Time-Resolved Covalent Labeling Using [3H]AC5, a Photoactivatable Agonist. Mol Pharmacol 69:452–461. https://doi.org/10.1124/mol.105.017566

    Article  CAS  PubMed  Google Scholar 

  60. Lester RA, Dani JA (1995) Acetylcholine receptor desensitization induced by nicotine in rat medial habenula neurons. J Neurophysiol 74:195–206. https://doi.org/10.1152/jn.1995.74.1.195

    Article  CAS  PubMed  Google Scholar 

  61. Benowitz NL, Zevin S, Jacob P (1997) Sources of variability in nicotine and cotinine levels with use of nicotine nasal spray, transdermal nicotine, and cigarette smoking. Br J Clin Pharmacol 43:259–267. https://doi.org/10.1111/j.1365-2125.1997.00566.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Larsson L, Orlander J, Ansved T, Edstrom L (1988) Effects of chronic nicotine exposure on contractile enzyme-histochemical and biochemical properties of fast- and slow-twitch muscles in the rat. Acta Physiol Scand 134:519–527. https://doi.org/10.1111/j.1748-1716.1998.tb08526.x

    Article  CAS  PubMed  Google Scholar 

  63. Nakatani T, Nakashima T, Kita T, Ishihara A (2003) Effects of exposure to cigarette smoke at different dose levels on extensor digitorum longus muscle fibres in Wistar-Kyoto and spontaneously hypertensive rats. Clin Exp Pharmacol Physiol 30:671–677. https://doi.org/10.1046/j.1440-1681.2003.03898.x

    Article  CAS  PubMed  Google Scholar 

  64. Degens H, Gayan-Ramirez G, van Hees HWH (2015) Smoking-induced Skeletal Muscle Dysfunction. From Evidence to Mechanisms. Am J Respir Crit Care Med 191(6):620–625. https://doi.org/10.1164/rccm.201410-1830pp

    Article  CAS  PubMed  Google Scholar 

  65. Wang H, Sun X (2005) Desensitized nicotinic receptors in brain. Brain Res Rev 48:420–437. https://doi.org/10.1016/j.brainresrev.2004.09.003

    Article  CAS  PubMed  Google Scholar 

  66. Wang L, McComb JG, Weiss MH, McDonough AA, Zlokovic BV (1994) Nicotine downregulates α2 isoform of Na,K-ATPase at the blood-brain barrier and brain in rats. Biochem Biophys Res Commun 199:1422–1427. https://doi.org/10.1006/bbrc.1994.1389

    Article  CAS  PubMed  Google Scholar 

  67. Bao H, Sun H, Xiao Y, Zhang Y, Wang X, Xu X, Liu Z, Fang J, Li Z (2015) Functional interaction of nicotinic acetylcholine receptors and Na+/K+ ATPase from Locusta migratoria manilensis (Meyen). Sci Rep 5:8849. https://doi.org/10.1038/srep08849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhu D, Xiong WC, Mei L (2006) Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering. J Neurosci 26:4841–4851. https://doi.org/10.1523/JNEUROSCI.2807-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Willmann R, Pun S, Stallmach L, Sadasivam G, Santos AF, Caroni P, Fuhrer C (2006) Cholesterol and lipid microdomains stabilize the postsynapse at the neuromuscular junction. EMBO J 25:4050–4060. https://doi.org/10.1038/sj.emboj.7601288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Brannigan G, LeBard DN, Henin J, Eckenhoff RG, Klein ML (2010) Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain. Proc Natl Acad Sci USA 107(32):14122–14127. https://doi.org/10.1073/pnas.1008534107

    Article  PubMed  PubMed Central  Google Scholar 

  71. Haviv H, Habeck M, Kanai R, Toyoshima C, Karlish SJ (2013) Neutral phospholipids stimulate Na,K-ATPase activity: a specific lipid-protein interaction. J Biol Chem 288:10073–10081. https://doi.org/10.1074/jbc.M112.446997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Habeck M, Kapri-Pardes E, Sharon M, Karlish SJ (2017) Specific phospholipid binding to Na,K-ATPase at two distinct sites. Proc Natl Acad Sci USA 114(11):2904–2909. https://doi.org/10.1073/pnas.1620799114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhang J, Li X, Yu H, Larre I, Dube PR, Kennedy DJ, Tang WHW, Westfall K, Pierre SV, Xie Z, Chen Y (2020) Regulation of Na/K-ATPase expression by cholesterol: isoform specificity and the molecular mechanism. Am J Physiol Cell Physiol 319:C1107–C1119. https://doi.org/10.1152/ajpcell.00083.2020

    Article  CAS  PubMed  Google Scholar 

  74. Chen Y, Li X, Ye Q, Tian J, Jing R, Xie Z (2011) Regulation of α1 Na/K-ATPase expression by cholesterol. J Biol Chem 286:15517–15524. https://doi.org/10.1074/jbc.M110.204396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lifshitz Y, Petrovich E, Haviv H, Goldshleger R, Tal DM, Garty H, Karlish SJD (2007) Purification of the human α2 isoform of Na,K-ATPase expressed in Pichia pastoris. Stabilization by lipids and FXYD1. Biochemistry 46:14937–14950. https://doi.org/10.1021/bi701812c

    Article  CAS  PubMed  Google Scholar 

  76. Kapri-Pardes E, Katz A, Haviv H, Mahmmoud Y, Ilan M, Khalfin-Penigel I, Carmeli S, Yarden O, Karlish SJD (2011) Stabilization of the α2 isoform of Na,K-ATPase by mutations in a phospholipid binding pocket. J Biol Chem 286:42888–42899. https://doi.org/10.1074/jbc.M111.293852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kravtsova VV, Petrov AM, Vasiliev AN, Zefirov AL, Krivoi II (2015) Role of cholesterol in the maintenance of endplate electrogenesis in rat diaphragm. Bull Exp Biol Med 158:298–300. https://doi.org/10.1007/s10517-015-2745-8

    Article  CAS  PubMed  Google Scholar 

  78. Boon H, Kostovski E, Pirkmajer S, Song M, Lubarski I, Iversen PO, Hjeltnes N, Widegren U, Chibalin AV (2012) Influence of chronic and acute spinal cord injury on skeletal muscle Na+-K+-ATPase and phospholemman expression in humans. Am J Physiol Endocrinol Metab 302:E864–E871. https://doi.org/10.1152/ajpendo.00625.2011

    Article  CAS  PubMed  Google Scholar 

  79. Perry BD, Levinger P, Morris HG, Petersen AC, Garnham AP, Levinger I, McKenna MJ (2015) The effects of knee injury on skeletal muscle function, Na+,K+-ATPase content, and isoform abundance. Physiol Rep 3:e12294. https://doi.org/10.14814/phy2.12294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kravtsova VV, Timonina NA, Zakir’yanova GF, Sokolova AV, Mikhailov VM, Zefirov AL, Krivoi II (2018) The Structural and Functional Characteristics of the Motor End Plates of Dysferlin-Deficient Mice. Neurochem J 12:305–310. https://doi.org/10.1134/S1819712418040049

    Article  CAS  Google Scholar 

  81. Kravtsova VV, Bouzinova EV, Machkov VV, Timonina NA, Zakyrjanova GF, Zefirov AL, Krivoi II (2019) Abnormal membrane localization of α2 isoform of Na,K-ATPase in m. soleus of dysferlin-deficient mice. Bull Exp Biol Med 166:593–597. https://doi.org/10.1007/s10517-019-04398-z

    Article  CAS  PubMed  Google Scholar 

  82. Bodine SC, Baehr LM (2014) Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF-1 and MAFbx/Atrogin-1. Am J Physiol Endocrinol Metab 307:E469–E484. https://doi.org/10.1152/ajpendo.00204.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Vilchinskaya NA, Mochalova EP, Nemirovskaya TL, Mirzoev TM, Turtikova OV, Shenkman BS (2017) Rapid decline in MyHC I(β) mRNA expression in rat soleus during hindlimb unloading is associated with AMPK dephosphorylation. J Physiol 595:7123–7134. https://doi.org/10.1113/JP275184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gorza L, Sorge M, Seclì L, Brancaccio M (2021) Master Regulators of Muscle Atrophy: Role of Costamere Components. Cells 10:61. https://doi.org/10.3390/cells10010061

    Article  CAS  PubMed Central  Google Scholar 

  85. Kravtsova VV, Matchkov VV, Bouzinova EV, Vasiliev AN, Razgovorova IA, Heiny JA, Krivoi II (2015) Isoform-specific Na,K-ATPase alterations precede disuse-induced atrophy of rat soleus muscle. Biomed Res Int 2015:720172. https://doi.org/10.1155/2015/720172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM (2021) Early Lipid Raft-Related Changes: Interplay between Unilateral Denervation and Hindlimb Suspension. Int J Mol Sci 22: 2239. https://doi.org/10.3390/ijms22052239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rudolf R, Khan MM, Labeit S, Deschenes MR (2014) Degeneration of neuromuscular junction in age and dystrophy. Front Aging Neurosci 6:99. https://doi.org/10.3389/fnagi.2014.00099

    Article  PubMed  PubMed Central  Google Scholar 

  88. Tintignac LA, Brenner HR, Rüegg MA (2015) Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 95:809–852. https://doi.org/10.1152/physrev.00033.2014

    Article  CAS  PubMed  Google Scholar 

  89. Slater CR (2020) ‘Fragmentation’ of NMJs: a sign of degeneration or regeneration? A long journey with many junctions. Neuroscience 439:28–40. https://doi.org/10.1016/j.neuroscience.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  90. Chibalin AV, Benziane B, Zakyrjanova GF, Kravtsova VV, Krivoi II (2018) Early endplate remodeling and skeletal muscle signaling events following rat hindlimb suspension. J Cell Physiol 233:6329–6336. https://doi.org/10.1002/jcp.26594

    Article  CAS  PubMed  Google Scholar 

  91. Pirkmajer S, Petric M, Chibalin AV (2021) The role of AMPK in regulation of Na+,K+-ATPase in skeletal muscle: does the gauge always plug the sink? J Muscle Res Cell Motil 42(1):77–97. https://doi.org/10.1007/s10974-020-09594-3

    Article  CAS  PubMed  Google Scholar 

  92. Carnio S, LoVerso F, Baraibar MA, Longa E, Khan MM, Maffei M, Reischl M, Canepari M, Loefler S, Kern H, Blaauw B, Friguet B, Bottinelli R, Rudolf R, Sandri M (2014) Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Rep 8:1509–1521. https://doi.org/10.1016/j.celrep.2014.07.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cervero C, Montull N, Tarabal O, Piedrafita L, Esquerda JE, Calderó J (2016) Chronic treatment with the AMPK agonist AICAR prevents skeletal muscle pathology but fails to improve clinical outcome in a mouse model of severe spinal muscular atrophy. Neurotherapeutics 13:198–216. https://doi.org/10.1007/s13311-015-0399-x

    Article  CAS  PubMed  Google Scholar 

  94. Dial AG, Ng SY, Manta A, Ljubicic V (2018) The Role of AMPK in Neuromuscular Biology and Disease. Trends Endocrinol Metab 29:300–312. https://doi.org/10.1016/j.tem.2018.02.010

    Article  CAS  PubMed  Google Scholar 

  95. Ambery AG, Tackett L, Penque BA, Brozinick JT, Elmendorf JS (2017) Exercise training prevents skeletal muscle plasma membrane cholesterol accumulation, cortical actin filament loss, and insulin resistance in C57BL/6J mice fed a western-style high-fat diet. Physiol Rep 5:e13363. https://doi.org/10.14814/phy2.13363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kravtsova VV, Vilchinskaya NA, Rozlomii VL, Shenkman BS, Krivoi II (2019) Low Ouabain Doses and AMP-Activated Protein Kinase as Factors Supporting Electrogenesis in Skeletal Muscle. Biochemistry (Moscow) 84:1085–1092. https://doi.org/10.1134/S0006297919090116

  97. Juel C (2016) Nitric oxide and Na,K-ATPase activity in rat skeletal muscle. Acta Physiol (Oxf) 216(4):447–453. https://doi.org/10.1111/apha.12617

  98. Vitadello M, Sorge M, Percivalle E, Germinario E, Danieli-Betto D, Turco E, Tarone G, Brancaccio M, Gorza L (2020) Loss of melusin is a novel, neuronal NO synthase/FoxO3-independent master switch of unloading-induced muscle atrophy. J Cachexia Sarcopenia Muscle 11:802–819. https://doi.org/10.1002/jcsm.12546

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sharlo KA, Paramonova II, Lvova ID, Mochalova EP, Kalashnikov VE, Vilchinskaya NA, Tyganov SA, Konstantinova TS, Shevchenko TF, Kalamkarov GR, Shenkman BS (2021) Plantar Mechanical Stimulation Maintains Slow Myosin Expression in Disused Rat Soleus Muscle via NO-Dependent Signaling. Int J Mol Sci 22:1372. https://doi.org/10.3390/ijms22031372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhao C, Yu Y, Zhang Y, Shen J, Jiang L, Sheng G, Zhang W, Xu L, Jiang K, Mao S, Jiang P, Gao F (2019) β-Catenin Controls the Electrophysiologic Properties of Skeletal Muscle Cells by Regulating the α2 Isoform of Na+/K+-ATPase. Front Neurosci 13:831. https://doi.org/10.3389/fnins.2019.00831

    Article  PubMed  PubMed Central  Google Scholar 

  101. Doris PA, Bagrov AY (1998) Endogenous sodium pump inhibitors and blood pressure regulation: an update on recent progress. Proc Soc Exp Biol Med 218:156–167. https://doi.org/10.3181/00379727-218-44283

    Article  CAS  PubMed  Google Scholar 

  102. Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca2+ stores. Trends Neurosci 24:602–608. https://doi.org/10.1016/S0166-2236(00)01891-9

    Article  CAS  PubMed  Google Scholar 

  103. Sacchetto R, Margreth A, Pelosi M, Carafoli E (1996) Colocalization of the dihydropyridine receptor, the plasma-membrane calcium ATPase isoform 1 and the sodium/calcium exchanger to the junctional membrane domain of transverse tubules of rabbit skeletal muscle. Eur J Biochem 237:483–488.

    Article  CAS  Google Scholar 

  104. Altamirano F, Eltit JM, Robin G, Linares N, Ding X, Pessah IN, Allen PD, López JR (2014) Ca2+ influx via the Na+/Ca2+ exchanger is enhanced in malignant hyperthermia skeletal muscle. J Biol Chem 289:19180–19190. https://doi.org/10.1074/jbc.M114.550764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao J, Wymore RS, Wang Y, Gaudette GR, Krukenkamp IB, Cohen IS, Mathias RT (2002) Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J Gen Physiol 119:297–312. https://doi.org/10.1085/jgp.20028501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Holthouser KA, Mandal A, Merchant ML, Schelling JR, Delamere NA, Valdes RR Jr, Tyagi SC, Lederer ED, Khundmiri SJ (2010) Ouabain stimulates Na-K-ATPase through a sodium/hydrogen exchanger-1 (NHE-1)-dependent mechanism in human kidney proximal tubule cells. Am J Physiol Renal Physiol 299:F77–F90. https://doi.org/10.1152/ajprenal.00581.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ketchem CJ, Conner CD, Murray RD, DuPlessis M, Lederer ED, Wilkey D, Merchant M, Khundmiri SJ (2016) Low dose ouabain stimulates Na-K ATPase α1 subunit association with angiotensin II type 1 receptor in renal proximal tubule cells. Biochim Biophys Acta 1863:2624–2636. https://doi.org/10.1016/j.bbamcr.2016.07.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tverskoi AM, Sidorenko SV, Klimanova EA, Akimova OA, Smolyaninova LV, Lopina OD, Orlov SN (2016) Effects of ouabain on proliferation of human endothelial cells correlate with Na+,K+-ATPase activity and intracellular ratio of Na+ and K+. Biochemistry (Moscow) 81:876–883. https://doi.org/10.1134/S0006297916080083

  109. Orlov SN, Klimanova EA, Tverskoi AM, Vladychenskaya EA, Smolyaninova LV, Lopina OD (2017) Na+ i,K+ i-Dependent and -Independent Signaling Triggered by Cardiotonic Steroids: Facts and Artifacts. Molecules 22:635. https://doi.org/10.3390/molecules22040635

    Article  CAS  PubMed Central  Google Scholar 

  110. Dobretsov M, Stimers JR (2005) Neuronal function and alpha3 isoform of the Na/K–ATPase. Front Biosci 10:2373–2396. https://doi.org/10.2741/1704

    Article  CAS  PubMed  Google Scholar 

  111. Khalaf FK, Dube P, Mohamed A, Tian J, Malhotra D, Haller ST, Kennedy DJ (2018) Cardiotonic steroids and the sodium trade balance: new insights into trade-off mechanisms mediated by the Na+/K+-ATPase. Int J Mol Sci 19:2576. https://doi.org/10.3390/ijms19092576

    Article  CAS  PubMed Central  Google Scholar 

  112. Bauer N, Müller-Ehmsen J, Krämer U, Hambarchian N, Zobel C, Schwinger RH, Neu H, Kirch U, Grünbaum EG, Schoner W (2005) Ouabain-like compound changes rapidly on physical exercise in humans and dogs: Effects of β-blockade and angiotensin-converting enzyme inhibition. Hypertension 45:1024–1028. https://doi.org/10.1161/01.HYP.0000165024.47728.f7

    Article  CAS  PubMed  Google Scholar 

  113. Hamlyn JM, Manunta P (2015) Endogenous cardiotonic steroids in kidney failure: A review and an hypothesis. Adv Chronic Kidney Dis 22:232–244. https://doi.org/10.1053/j.ackd.2014.12.005

    Article  PubMed  PubMed Central  Google Scholar 

  114. Lichtstein D, Ilani A, Rosen H, Horesh N, Singh SV, Buzaglo N, Hodes A (2018) Na+,K+-ATPase Signaling and Bipolar Disorder. Int J Mol Sci 19:2314. https://doi.org/10.3390/ijms19082314

    Article  CAS  PubMed Central  Google Scholar 

  115. Markov AG, Fedorova AA, Kravtsova VV, Bikmurzina AE, Okorokova LS, Matchkov VV, Cornelius V, Amasheh S, Krivoi II (2020) Circulating Ouabain Modulates Expression of Claudins in Rat Intestine and Cerebral Blood Vessels. Int J Mol Sci 21:5067. https://doi.org/10.3390/ijms21145067

    Article  CAS  PubMed Central  Google Scholar 

  116. Agalakova NI, Kolodkin NI, Adair CD, Trashkov AP, Bagrov AY (2021) Preeclampsia: Cardiotonic Steroids, Fibrosis, Fli1 and Hint to Carcinogenesis. Int J Mol Sci 22:1941. https://doi.org/10.3390/ijms22041941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, Bachurin SO, Ermolkevich TG, Goldman IL, Sadchikova ER, Kovrazhkina EA, Skvortsova VI, Ling SC, Da Cruz S, Parone PA, Buchman VL, Ninkina NN (2013) Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem 288:25266–25274. https://doi.org/10.1074/jbc.M113.492017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bogdanova A, Petrushanko IY, Hernansanz-Agustin P, Martínez-Ruiz A (2016) “Oxygen Sensing” by Na,K-ATPase: These Miraculous Thiols. Front Physiol 7:314. https://doi.org/10.3389/fphys.2016.00314

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chuang C-C, Zhou T, Olfert IM, Zuo L (2018) Hypoxic Preconditioning Attenuates Reoxygenation-Induced Skeletal Muscle Dysfunction in Aged Pulmonary TNF-a Overexpressing Mice. Front Physiol 9:1720. https://doi.org/10.3389/fphys.2018.01720

    Article  PubMed  PubMed Central  Google Scholar 

  120. Vyskocil F, Di Gregorio F, Gorio A (1985) The facilitating effect of gangliosides on the electrogenic (Na+/K+) pump and on the resistance of the membrane potential to hypoxia in neuromuscular preparation. Pflügers Arch 403:1–6. https://doi.org/10.1007/BF00583273

    Article  CAS  PubMed  Google Scholar 

  121. De Angelis C, Haupert GT Jr (1998) Hypoxia triggers release of an endogenous inhibitor of Na+-K+-ATPase from midbrain and adrenal. Am J Physiol 274:F182–F188. https://doi.org/10.1152/ajprenal.1998.274.1.F182

    Article  PubMed  Google Scholar 

  122. Lewis P, O’Halloran KD (2016) Diaphragm Muscle Adaptation to Sustained Hypoxia: Lessons from Animal Models with Relevance to High Altitude and Chronic Respiratory Diseases. Front Physiol 7:623. https://doi.org/10.3389/fphys.2016.00623

    Article  PubMed  PubMed Central  Google Scholar 

  123. Iannello S, Milazzo P, Belfiore F (2007) Animal and human tissue Na,K-ATPase in normal and insulin-resistant states: regulation, behaviour and interpretative hypothesis on NEFA effects. Obes Rev 8:231–251. https://doi.org/10.1111/j.1467-789X.2006.00276.x

    Article  CAS  PubMed  Google Scholar 

  124. Kawakami K, Onaka T, Iwase M, Homma I, Ikeda K (2005) Hyperphagia and obesity in Na,K-ATPase alpha2 subunit-defective mice. Obes Res 13:1661–1671. https://doi.org/10.1038/oby.2005.204

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 18-15-00043.

Author information

Authors and Affiliations

Authors

Contributions

Idea, writing and editing of the manuscript (V.V.K. and I.I.K.).

Corresponding author

Correspondence to I. I. Krivoi.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 695–716https://doi.org/10.31857/S0869813921060066.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kravtsova, V.V., Krivoi, I.I. Molecular and Functional Heterogeneity of Na,K-ATPase in the Skeletal Muscle. J Evol Biochem Phys 57, 835–851 (2021). https://doi.org/10.1134/S0022093021040086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040086

Keywords:

Navigation