Skip to main content
Log in

Influence of Iron Oxide-Based Nanoparticles with Various Shell Modifications on the Generation of Reactive Oxygen Species in Stimulated Human Blood Cells in vitro

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Among the available nanoparticles, those based on iron oxide are of particular interest due to their biological safety, magnetic properties, potential for imparting desired physico-chemical properties, and capacity for surface modifications with biocompatible, bioactive materials, ligands and antibodies. An important aspect of nanoparticles that determines their possibilities and range of clinical applications is their biocompatibility profile. Toxic effects can arise due to mechanisms mediated by reactive oxygen species (ROS); therefore, the development of nanoparticles intended for biomedical applications requires special attention to safety assessment in terms of the generation of oxidative stress. In this study, we examined the application of various shells (based on polylactide, polysaccharide, or albumin) on the dose-dependent effect of magnetite nanoparticles (MNPs) on the generation of ROS in stimulated human blood cells, as well as on the dynamics of the induced oxidative hemolysis of erythrocytes. MNPs with a shell of polylactide, albumin, and polysaccharide, in the range of all the used concentrations (0.1–2.0 mg/mL) and throughout the entire incubation period (0–180 min), did not affect the kinetics of the chemiluminescence response, while providing a unidirectional but differently pronounced decrease in the maximum intensity of induced chemiluminescence and total ROS production. All types of investigated nanoparticles in the range of concentrations from 1.0 to 2.0 mg/mL provided a dose-dependent enhancement of this effect. Under conditions of induced ROS generation, the various MNP shells did not modify the effects of these nanoparticles and only regulated their intensity. MNPs with a polylactide shell had a maximum effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Yaqoob AA, Ahmad H, Parveen T, Ahmad A,Oves M, Ismail IMI, Qari HA, Umar K, Mohamad Ibrahim MN (2020) Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem 8:1–23. https://doi.org/10.3389/fchem.2020.00341

    Article  CAS  Google Scholar 

  2. Filipczak N, Pan J, Yalamarty SSK, Torchilin VP (2020) Recent advancements in liposome technology. Adv Drug Deliv Rev 156:4–22. https://doi.org/10.1016/j.addr.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  3. Zahin N, Anwar R, Tewari D, Kabir MT, Sajid A, Mathew B, Uddin MS, Aleya L, Abdel-Daim MM (2020) Nanoparticles and its biomedical applications in health and diseases: special focus on drug delivery. Environ Sci Pollut Res 27:19151–19168. https://doi.org/10.1007/s11356-019-05211-0

    Article  CAS  Google Scholar 

  4. Anselmo AC, Mitragotri S (2019) Nanoparticles in the clinic: An update. Bioeng Transl Med 4:1–16. https://doi.org/10.1002/btm2.10143

    Article  Google Scholar 

  5. Monk BJ, Herzog TJ, Wang G, Triantos S, Maul S, Knoblauch R, Mcgowan T, Shalaby WSW, Coleman RL (2019) Gynecologic Oncology A phase 3 randomized, open-label, multicenter trial for safety and ef fi cacy of combined trabectedin and pegylated liposomal doxorubicin therapy for recurrent ovarian cancer. Gynecol Oncol 156(3):535-544 https://doi.org/10.1016/j.ygyno.2019.12.043

    Article  CAS  Google Scholar 

  6. Srivastava V, Gusain D, Sharma YC (2015) Critical Review on the Toxicity of Some Widely Used Engineered Nanoparticles. Ind Eng Chem Res 54:6209–6233

    Article  CAS  Google Scholar 

  7. Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X (2018) Surface modification of magnetic iron oxide nanoparticles. Nanomaterials 8:1–27. https://doi.org/10.3390/nano8100810

    Article  CAS  Google Scholar 

  8. Grüttner C, Müller K, Teller J, Westphal F (2013) Synthesis and functionalisation of magnetic nanoparticles for hyperthermia applications. Int J Hyperth 29:777–789. https://doi.org/10.3109/02656736.2013.835876

    Article  Google Scholar 

  9. Gholami A, Mousavi SM, Hashemi SA, Chiang W, Parvin N (2020) Current trends in chemical modifications of magnetic nanoparticles for targeted drug delivery in cancer chemotherapy. Drug Metab Rev 0:1–20. https://doi.org/10.1080/03602532.2020.1726943

    Article  CAS  Google Scholar 

  10. Vallabani NVS, Singh S (2018) Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech 8:1–23. https://doi.org/10.1007/s13205-018-1286-z

    Article  Google Scholar 

  11. Kalash RS, Lakshmanan VK, Cho C-S, Park I-K (2016) Theranostics. In: Biomaterials Nanoarchitectonics. Elsevier Inc. 197–215.

    Chapter  Google Scholar 

  12. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916. https://doi.org/10.1155/2013/942916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh N, Jenkins GJS, Asadi R, Doak SH (2010) Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano Rev 1:5358. https://doi.org/10.3402/nano.v1i0.5358

    Article  CAS  Google Scholar 

  14. Toropova YaG, Pechnikova NA, Zelinskaya IA, Korolev DV, Gareev KG, Markitantova AS, Bogushevskaya VD, Povolotskaya AV, Manshina AA (2018) Study of hemocompatibility of magnetic magnetite nanoparticles and composite magnetite-silica particles in vitro. Bul sib med 17: 157-167. (In Russ). https://doi.org/10.20538/1682-0363-2018-3-157-167

    Article  Google Scholar 

  15. Toropova YG, Motorina DS, Gorshkova MN, Gareev KG, Korolev DV, Muzhikyan AA (2020) The effect of intravenous administration to rats of magnetite nanoparticles with various shells on the functional state and morphology of the endothelium and on antioxidant status. Transl Med 7:52–64. https://doi.org/10.18705/2311-4495-2020-7-2-52-64

    Article  Google Scholar 

  16. Toropova YG, Motorina DS, Zelinskaya IA, Korolev DV, Shulmeister GA, Skorik YA (2021) Generation of reactive oxygen species by human whole blood cells when exposed to iron oxide nanoparticles coated with various membranes. Bulletin of Experimental Biology and Medicine 171: 95-99. (In Russ).

    Article  Google Scholar 

  17. DeStefano V, Khan S, Tabada A (2020) Applications of PLA in modern medicine. Eng Regen 1:76–87. https://doi.org/10.1016/j.engreg.2020.08.002

    Article  Google Scholar 

  18. Varanko A, Saha S, Chilkoti A (2020) Recent trends in protein and peptide-based biomaterials for advanced drug delivery. Adv Drug Deliv Rev 156:133–187. https://doi.org/10.1016/j.addr.2020.08.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang K, Liu M, Mo R (2020) Polysaccharide-Based Biomaterials for Protein Delivery. Med Drug Discov 7:100031. https://doi.org/10.1016/j.medidd.2020.100031

    Article  Google Scholar 

  20. Toropova YG, Golovkin AS, Malashicheva AB, Korolev DV, Gorshkov AN, Gareev KG, Afonin MV, Galagudza MM (2017) In vitro toxicity of FemOn, FemOn-SiO2 composite, and SiO2-FemOn core-shell magnetic nanoparticles. Int J Nanomedicine 12:593–603. https://doi.org/10.2147/IJN.S122580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gareev KG, Pugach VS, Evreinova NV, Naumysheva EB, Panov MF, Korolev DV (2017) Development of methods for surface modification of magnetic nanoparticles with a protective shell of saccharides. Biotechnosphere 3: 76-81. (In Russ).

    Google Scholar 

  22. Zorin VN, Naumisheva EB, Postnov VN, Evreinova NV, Gareev KG, Korolev DV (2018) Magnetic nanoparticles for medical application with a coating deposited with various methods. J Phys Conf Ser 1124(3): 031009. https://doi.org/10.1088/1742-6596/1124/3/031009

    Article  CAS  Google Scholar 

  23. Dogadin SA, Dudina MA, Savchenko AA, Man’kovskii VA, Gvozdev II (2017) Respiratory burst activity in neutrophilic granulocytes in the onset of Graves’ disease. Probl Endokrinol (Mosk) 63:4–8. https://doi.org/10.14341/probl20176314-8

  24. Dayem AA, Hossain MK, Lee S Bin, Kim K, Saha SK, Yang GM, Choi HY, Cho SG (2017) The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci 18:1–21. https://doi.org/10.3390/ijms18010120

    Article  CAS  Google Scholar 

  25. Patil US, Adireddy S, Jaiswal A, Mandava S, Lee BR, Chrisey DB (2015) In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. IntJMolSci, 16:24417–24450.

    CAS  Google Scholar 

  26. Sundarraj K, Raghunath A, Panneerselvam L, Perumal E (2017) Iron oxide nanoparticles modulate heat shock proteins and organ specific markers expression in mice male accessory organs. Toxicol Appl Pharmacol 317:12–24.

    Article  CAS  Google Scholar 

  27. Mai T, Hilt JZ (2017) Magnetic nanoparticles: reactive oxygen species generation and potential therapeutic applications. J Nanoparticle Res 19:253. https://doi.org/10.1007/s11051-017-3943-2

    Article  CAS  Google Scholar 

  28. Wydra RJ, Rychahou PG, Evers BM, Anderson KW, Dziubla TD, Hilt JZ (2015) The role of ROS generation from magnetic nanoparticles in an alternating magnetic field on cytotoxicity. Acta Biomater 25:284–290. https://doi.org/10.1016/j.actbio.2015.06.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tuzun BS, Fafal T, Tastan P, Kivcak B, Yelken BO, Kayabasi C, Susluer SY, Gunduz C (2020) Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus Brot. aqueous extract. Green Process Synth 9:153–163. https://doi.org/10.1515/gps-2020-0016

    Article  Google Scholar 

  30. Paul S, Saikia JP, Samdarshi SK, Konwar BK (2009) Investigation of antioxidant property of iron oxide particlesby 1'-1' diphenylpicryl-hydrazyle (DPPH) method. J Magn Magn Mater 321:3621–3623. https://doi.org/10.1016/j.jmmm.2009.07.004

    Article  CAS  Google Scholar 

  31. Proskurnina EV, Polimova AM, Sozarukova MM, Prudnikova MA, Ametov AS, Vladimirov YA (2016) Kinetic Chemiluminescence as a Method for Oxidative Stress Evaluation in Examinations of Patients with Type 2 Diabetes Mellitus. Bull Exp Biol Med 161:131–133. https://doi.org/10.1007/s10517-016-3362-x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Idea and design of the experiment (Ya.G.T., A.Ya.B.); data collection (M.N.G., D.S.M., Yu.A.S., D.V.K., Yu.A.S., G.A.S.); data processing (Ya.G.T., M.N.G., D.S.M.); writing and editing the manuscript (Ya.G.T, E.Yu.P.).

Corresponding author

Correspondence to Ya. G. Toropova.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 4, pp. 310–319https://doi.org/10.31857/S0044452921040069.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toropova, Y.G., Gorshkova, M.N., Motorina, D.S. et al. Influence of Iron Oxide-Based Nanoparticles with Various Shell Modifications on the Generation of Reactive Oxygen Species in Stimulated Human Blood Cells in vitro. J Evol Biochem Phys 57, 782–791 (2021). https://doi.org/10.1134/S0022093021040049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040049

Keywords:

Navigation