Skip to main content
Log in

Effect of Cooling on Force-Frequency Relationship, Rest Potentiation, and Frequency-Dependent Acceleration of Relaxation in the Guinea Pig Myocardium

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

While deep hypothermia is well known to lead to cardiac malfunction up to circulatory arrest, mild hypothermia can prevent hypoxic damage to the heart. Importantly, a large body of research on deep hypothermia was carried out on rats and mice whose myocardium is significantly different from the human. In the present work, we investigated the effect of deep hypothermia on rhythmoinotropic phenomena in the guinea pig (GP) whose myocardium is more alike the human. The force––frequency relationship (FFR), effect of post-rest potentiation, and frequency-dependent acceleration of relaxation (FDAR) were studied in GP right ventricular papillary muscles (PM) within a range of 0.1–3.0 Hz at temperatures of 30, 20 and 10°C. It was shown that a positive FFR, mediated mainly by the inward Ca2+ current through the L-type Ca2+ channel, persists when cooling to 10°C, suggesting that this mechanism retains its activity even under deep hypothermia. The effect of post-rest potentiation persists down to 20°C, while further cooling replaces potentiation by depression. This may indicate that at 10°C, the functioning of the sarcoplasmic reticulum is impaired, as manifested in the rest-induced inversion of the post-rest potentiation effect. The effect of frequency-dependent acceleration of the kinetics of muscular contraction also persists down to 20°C, supporting the suggestion that this effect in the GP myocardium relies on the sarcoplasmic reticulum. Thus, we found that among the studied frequency-dependent effects, there are those affected by deep hypothermia (post-rest potentiation effect, FDAR) and those resistant to this exposure (FFR), which may reflect the differences in thermal sensitivity of the underlying mechanisms of Ca2 + transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Endoh M (2004) Force-frequency relationship in intact mammalian ventricular myocardium: Physiological and pathophysiological relevance. Eur J Pharmacol 500(1–3):73–86. https://doi.org/10.1016/j.ejphar.2004.07.013

    Article  CAS  PubMed  Google Scholar 

  2. Stuyvers B, McCulloch A, Guo J, Duff H, ter Keurs H (2002) Effect of stimulation rate, sarcomere length and Ca(2+) on force generation by mouse cardiac muscle. J Physiol 544(3):817–830. https://doi.org/10.1113/jphysiol.2002.024430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kassiri Z, Myers R, Kaprielian R, Banijamali H, Backx P (2000) Rate-dependent changes of twitch force duration in rat cardiac trabeculae: A property of the contractile system. J Physiol 524 (Pt 1):221–231. https://doi.org/10.1111/j.1469-7793.2000.t01-3-00221.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakipova O, Zakharova N, Andreeva L, Chumaeva N, Averin A, Kosarskii L, Anufriev A, Lewinski D, Kockskamper J, Pieske B (2007) The seasonal peculiarities of force-frequency relationships in active ground squirrel Spermophilus undulatus ventricle. Cryobiology 55(3):173–181. https://doi.org/10.1016/j.cryobiol.2007.07.001

    Article  PubMed  Google Scholar 

  5. Zakharova N, Nakipova O, Averin A, Tikhonov K, Solomonov N (2009) Changes in force-frequency relationships in cardiac papillary muscles of hibernating ground squirrels under cooling. Dokl Biol Sci 424:21–24. https://doi.org/10.1134/s0012496609010074

    Article  CAS  PubMed  Google Scholar 

  6. Kondo N, Shibata S (1984) Calcium source for excitation-contraction coupling in myocardium of nonhibernating and hibernating chipmunks. Science 225(4662):641–643. https://doi.org/10.1126/science.6740332

    Article  CAS  PubMed  Google Scholar 

  7. Nakipova O, Averin A, Kosarsky L, Ignatiev D (2019) The Force-Frequency Dependence in the Heart Papillary Muscle of Ground Squirrel as a Reflection of Changes in the Functional State of Animals during the Annual Cycle. BIOPHYSICS 64(5):786–792. https://doi.org/10.1134/S0006350919050191

    Article  CAS  Google Scholar 

  8. Mulieri L, Hasenfuss G, Leavitt B, Allen P, Alpert N (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5):1743–1750. https://doi.org/10.1161/01.cir.85.5.1743

    Article  CAS  PubMed  Google Scholar 

  9. Silverman D, Rambod M, Lustgarten D, Lobel R, LeWinter M, Meyer M (2020) Heart Rate-Induced Myocardial Ca2+ Retention and Left Ventricular Volume Loss in Patients With Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 9(17):e017215. https://doi.org/10.1161/JAHA.120.017215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pieske B, Maier L, Bers D, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circulation research 85(1):38–46. https://doi.org/10.1161/01.res.85.1.38

    Article  CAS  PubMed  Google Scholar 

  11. Lamberts R, Hamdani N, Soekhoe T, Boontje N, Zaremba R, Walker L, Tombe P de, van der Velden J, Stienen G (2007) Frequency-dependent myofilament Ca2+ desensitization in failing rat myocardium. J Physiol 582(Pt 2):695–709. https://doi.org/10.1113/jphysiol.2007.134486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lukas A, Bose R (1986) Mechanisms of frequency-induced potentiation of contractions in isolated rat atria. Naunyn Schmiedebergs Arch Pharmacol 334(4):480–487. https://doi.org/10.1007/BF00569390

    Article  CAS  PubMed  Google Scholar 

  13. Ahlberg S, Hamlen R, Ewert D, Iaizzo P, Mulligan L (2007) Novel means to monitor cardiac performance: The impact of the force-frequency and force-interval relationships on recirculation fraction and potentiation ratio. Cardiovasc Eng 7(1):32–38. https://doi.org/10.1007/s10558-007-9023-y

    Article  PubMed  Google Scholar 

  14. Schillinger W, Lehnart S, Prestle J, Preuss M, Pieske B, Maier L, Meyer M, Just H, Hasenfuss G (1998) Influence of SR Ca(2+)-ATPase and Na(+)-Ca(2+)-exchanger on the force-frequency relation. Basic Res Cardiol 93 Suppl 1:38–45. https://doi.org/10.1007/s003950050208

    Article  Google Scholar 

  15. Kondratieva D, Afanasiev S, Usov V, Popov S (2017) Rhythmoinotropic Response of Papillary Muscles in Rats with Different Severity of Postinfarction Cardiosclerosis. Bull Exp Biol Med 163(5):612–616. https://doi.org/10.1007/s10517-017-3861-4

    Article  CAS  PubMed  Google Scholar 

  16. Kass D (1998) Force-frequency relation in patients with left ventricular hypertrophy and failure. Basic Res Cardiol 93 Suppl 1:108–116. https://doi.org/10.1007/s003950050232

    Article  Google Scholar 

  17. Tsai M-S, Huang C-H, Yu P-H, Tsai C-Y, Chen H-W, Cheng H-J, Chang W-T, Wang T-D, Chen W-J (2015) Prolonged cooling duration mitigates myocardial and cerebral damage in cardiac arrest. Am J Emerg Med 33(10):1374–1381. https://doi.org/10.1016/j.ajem.2015.07.030

    Article  PubMed  Google Scholar 

  18. Yu T, Yang Z, Li H, Ding Y, Huang Z, Li Y (2015) Short Duration Combined Mild Hypothermia Improves Resuscitation Outcomes in a Porcine Model of Prolonged Cardiac Arrest. Biomed Res Int 2015:279192. https://doi.org/10.1155/2015/279192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rittenberger J, Doshi A, Reynolds J (2015) Postcardiac Arrest Management. Emerg Med Clin North Am 33(3):691–712. https://doi.org/10.1016/j.emc.2015.04.011

    Article  PubMed  Google Scholar 

  20. Liu B, Wang L, Belke D (1991) Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell calcium 12(1):11–18. https://doi.org/10.1016/0143-4160(91)90080-x

    Article  CAS  PubMed  Google Scholar 

  21. Wang S-Q, Cao H-M, Zhou Z-Q (1997) Temperature dependence of the myocardial excitability of ground squirrel and rat. Journal of Thermal Biology 22(3):195–199. https://doi.org/10.1016/S0306-4565(97)00010-7

    Article  Google Scholar 

  22. Stowe D, Fujita S, An J, Paulsen R, Varadarajan S, Smart S (1999) Modulation of myocardial function and Ca2+ sensitivity by moderate hypothermia in guinea pig isolated hearts. The American journal of physiology 277(6):H2321–H2332. https://doi.org/10.1152/ajpheart.1999.277.6.H2321

    Article  CAS  PubMed  Google Scholar 

  23. Egorov Y, Glukhov A, Efimov I, Rosenshtraukh L (2012) Hypothermia-induced spatially discordant action potential duration alternans and arrhythmogenesis in nonhibernating versus hibernating mammals. American journal of physiology. Heart and circulatory physiology 303(8):H1035–H1046. https://doi.org/10.1152/ajpheart.00786.2011

    Article  CAS  PubMed  Google Scholar 

  24. Shutt R, Howlett S (2008) Hypothermia increases the gain of excitation-contraction coupling in guinea pig ventricular myocytes. American journal of physiology. Cell physiology 295(3):C692–700. https://doi.org/10.1152/ajpcell.00287.2008

    Article  CAS  PubMed  Google Scholar 

  25. Shattock M, Bers D (1987) Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: Implications for excitation-contraction coupling. Circulation research 61(6):761–771. https://doi.org/10.1161/01.res.61.6.761

    Article  CAS  PubMed  Google Scholar 

  26. Mattheussen M, Mubagwa K, van Aken H, Wusten R, Boutros A, Flameng W (1996) Interaction of heart rate and hypothermia on global myocardial contraction of the isolated rabbit heart. Anesthesia and analgesia 82(5):975–981. https://doi.org/10.1097/00000539-199605000-00015

    Article  CAS  PubMed  Google Scholar 

  27. Hiranandani N, Varian K, Monasky M, Janssen P (2006) Frequency-dependent contractile response of isolated cardiac trabeculae under hypo-, normo-, and hyperthermic conditions. Journal of applied physiology 100(5):1727–1732. https://doi.org/10.1152/japplphysiol.01244.2005

    Article  PubMed  Google Scholar 

  28. Redel A, Baumgartner W, Golenhofen K, Drenckhahn D, Golenhofen N (2002) Mechanical activity and force-frequency relationship of isolated mouse papillary muscle: Effects of extracellular calcium concentration, temperature and contraction type. Pflugers Archiv : European journal of physiology 445(2):297–304. https://doi.org/10.1007/s00424-002-0931-9

    Article  CAS  PubMed  Google Scholar 

  29. Nakipova O, Averin A, Evdokimovskii E, Pimenov O, Kosarski L, Ignat’ev D, Anufriev A, Kokoz Y, Reyes S, Terzic A, Alekseev A (2017) Store-operated Ca2+ entry supports contractile function in hearts of hibernators. PloS one 12(5):e0177469. https://doi.org/10.1371/journal.pone.0177469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mubagwa K, Lin W, Sipido K, Bosteels S, Flameng W (1997) Monensin-induced reversal of positive force-frequency relationship in cardiac muscle: Role of intracellular sodium in rest-dependent potentiation of contraction. J Mol Cell Cardiol 29(3):977–989. https://doi.org/10.1006/jmcc.1996.0342

    Article  CAS  PubMed  Google Scholar 

  31. Mackiewicz U, Lewartowski B (2006) Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: Important role of sarcolemmal Ca2+-ATPase. J Physiol Pharmacol 57(1):3–15.

    CAS  PubMed  Google Scholar 

  32. Sprung J, Stowe D, Kampine J, Bosnjak Z (1994) Hypothermia modifies anesthetic effect on contractile force and Ca2+ transients in cardiac Purkinje fibers. The American J Physiol 267(2 Pt 2):H725–733. https://doi.org/10.1152/ajpheart.1994.267.2.H725

    Article  CAS  Google Scholar 

  33. Piper H, Hütter J, Spieckermann P (1984) Temperature dependence of nifedipine action. J Mol Cell Cardiol 16(3):277–280. https://doi.org/10.1016/s0022-2828(84)80593-3

    Article  CAS  PubMed  Google Scholar 

  34. Bers D, Chen-Izu Y (2015) Sodium and calcium regulation in cardiac myocytes: From molecules to heart failure and arrhythmia. J Physiol 593(6):1327–1329. https://doi.org/10.1113/JP270133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Isenberg G, Trautwein W (1975) Temperature sensitivity of outward current in cardiac Purkinje fibers. Evidence of electrogenicity of active transport. Pflugers Archiv: European journal of physiology 358(3):225–234. https://doi.org/10.1007/BF00587219

    Article  CAS  PubMed  Google Scholar 

  36. Cohen C, Fozzard H, Sheu S (1982) Increase in intracellular sodium ion activity during stimulation in mammalian cardiac muscle. Circulation research 50(5):651–662. https://doi.org/10.1161/01.res.50.5.651

    Article  CAS  PubMed  Google Scholar 

  37. Kuratomi S, Matsuoka S, Sarai N, Powell T, Noma A (2003) Involvement of Ca2+ buffering and Na+/Ca2+ exchange in the positive staircase of contraction in guinea-pig ventricular myocytes. Pflugers Archiv: European journal of physiology 446(3):347–355. https://doi.org/10.1007/s00424-003-1023-1

    Article  CAS  PubMed  Google Scholar 

  38. Wang S, Huang Y, Liu K, Zhou Z (1997) Dependence of myocardial hypothermia tolerance on sources of activator calcium. Cryobiology 35(3):193–200. https://doi.org/10.1006/cryo.1997.2040

    Article  CAS  PubMed  Google Scholar 

  39. Kaspar S, Pelzer D (1995) Modulation by stimulation rate of basal and cAMP-elevated Ca2+ channel current in guinea pig ventricular cardiomyocytes. J Gen Physiol 106(2):175–201. https://doi.org/10.1085/jgp.106.2.175

    Article  CAS  PubMed  Google Scholar 

  40. Bates S, Gurney A (1999) Use-dependent facilitation and depression of L-type Ca2+ current in guinea-pig ventricular myocytes: Modulation by Ca2+ and isoprenaline. Cardiovasc Res 44(2):381–389. https://doi.org/10.1016/s0008-6363(99)00216-3

    Article  CAS  PubMed  Google Scholar 

  41. Puglisi J, Yuan W, Bassani J, Bers D (1999) Ca(2+) influx through Ca(2+) channels in rabbit ventricular myocytes during action potential clamp: Influence of temperature. Circulation research 85(6):e7–e16. https://doi.org/10.1161/01.res.85.6.e7

    Article  CAS  PubMed  Google Scholar 

  42. Herve J, Yamaoka K, Twist V, Powell T, Ellory J, Wang L (1992) Temperature dependence of electrophysiological properties of guinea pig and ground squirrel myocytes. The American journal of physiology 263(1 Pt 2):R177–R184. https://doi.org/10.1152/ajpregu.1992.263.1.R177

    Article  CAS  PubMed  Google Scholar 

  43. Spencer C, Mörner S, Noble M, Seed W (1994) Influences of stimulation frequency and temperature on interval-force relationships in guinea-pig papillary muscles. Acta Physiol Scand 150(1):11–20. https://doi.org/10.1111/j.1748-1716.1994.tb09654.x

    Article  CAS  PubMed  Google Scholar 

  44. Bjørnstad H, Tande P, Refsum H (1993) Mechanisms for hypothermia-induced increase in contractile force studied by mechanical restitution and post-rest contractions in guinea-pig papillary muscle. Acta Physiol Scand 148(3):253–264. https://doi.org/10.1111/j.1748-1716.1993.tb09556.x

    Article  PubMed  Google Scholar 

  45. Zhou Z, Liu B, Dryden W, Wang L (1991) Cardiac mechanical restitution in active and hibernating Richardson’s ground squirrel. The American journal of physiology 260(2 Pt 2):R353–R358. https://doi.org/10.1152/ajpregu.1991.260.2.R353

    Article  CAS  PubMed  Google Scholar 

  46. Moskvin A, Iaparov B, Ryvkin A, Solovyova O, Markhasin V (2015) Electron-conformational transformations govern the temperature dependence of the cardiac ryanodine receptor gating. Jetp Lett. 102(1):62–68. https://doi.org/10.1134/S002136401513010X

    Article  CAS  Google Scholar 

  47. Suko J (1973) The effect of temperature on Ca 2+ uptake and Ca 2+ -activated ATP hydrolysis by cardiac sarcoplasmic reticulum. Experientia 29(4):396–398. https://doi.org/10.1007/BF01926742

    Article  CAS  PubMed  Google Scholar 

  48. Monasky M, Janssen P (2009) The positive force-frequency relationship is maintained in absence of sarcoplasmic reticulum function in rabbit, but not in rat myocardium. J Comp Physiol B 179(4):469–479. https://doi.org/10.1007/s00360-008-0331-3

    Article  PubMed  Google Scholar 

  49. Bluhm W, Kranias E, Dillmann W, Meyer M (2000) Phospholamban: A major determinant of the cardiac force-frequency relationship. American journal of physiology. Heart and circulatory physiology 278(1):H249–55. https://doi.org/10.1152/ajpheart.2000.278.1.H249

    Article  CAS  PubMed  Google Scholar 

  50. Janssen P, Stull L, Marbán E (2002) Myofilament properties comprise the rate-limiting step for cardiac relaxation at body temperature in the rat. American journal of physiology. Heart and circulatory physiology 282(2):H499–507. https://doi.org/10.1152/ajpheart.00595.2001

    Article  CAS  PubMed  Google Scholar 

  51. Valverde C, Mundiña-Weilenmann C, Said M, Ferrero P, Vittone L, Salas M, Palomeque J, Petroff M, Mattiazzi A (2005) Frequency-dependent acceleration of relaxation in mammalian heart: A property not relying on phospholamban and SERCA2a phosphorylation. J Physiol 562(Pt 3):801–813. https://doi.org/10.1113/jphysiol.2004.075432

    Article  CAS  PubMed  Google Scholar 

  52. Yard N, Chiesi M, Ball H (1994) Effect of cyclopiazonic acid, an inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase, on the frequency-dependence of the contraction-relaxation cycle of the guinea-pig isolated atrium. Br J Pharmacol 113(3):1001–1007. https://doi.org/10.1111/j.1476-5381.1994.tb17092.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was implemented within a Governmental assignment to the Institute of Cell Biophysics (Russian Academy of Sciences) “A study of the features and mechanisms of the functioning of the myocardium in model animals exposed to hypothermia”.

Author information

Authors and Affiliations

Authors

Contributions

Experimental design, data collection, writing a manuscript (A.S.A.); editing a manuscript (N.M.Z.); data treatment (S.V.T.).

Corresponding author

Correspondence to A. S. Averin.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 4, pp. 289–299https://doi.org/10.31857/S0044452921040021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Averin, A.S., Zakharova, N.M. & Tarlachkov, S.V. Effect of Cooling on Force-Frequency Relationship, Rest Potentiation, and Frequency-Dependent Acceleration of Relaxation in the Guinea Pig Myocardium. J Evol Biochem Phys 57, 761–771 (2021). https://doi.org/10.1134/S0022093021040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040025

Keywords:

Navigation