Skip to main content
Log in

The Mechanisms of Muscle Mass and Strength Increase during Strength Training

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Strength training remains the most effective way to maintain or increase muscle mass and strength. Strength training is used during rehabilitation after injuries and prolonged hypokinesia, to prevent the development of age-related sarcopenia, metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Also, strength training is widely used by athletes of various specializations. The effectiveness of strength training varies depending on the individual characteristics, diet, and training program used. In recent years, significant progress has been achieved in understanding the mechanisms of skeletal muscle adaptation in response to strength training. The review addresses the most important mechanisms for increasing muscle mass and strength, which correspond to the current understanding of the problem in the modern literature. We consider the role of neural adaptation, as well as signaling processes that increase the muscle protein synthesis rate, in the development of adaptive changes in response to strength training. Based on the knowledge of these mechanisms, we analyze the key variables of strength training, such as training loads, work volume and movement velocities. The knowledge of the mechanisms that determine the effectiveness of the training process provides a better insight into the most important aspects of strength training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Tang E, Perco JG, Moore DR, Wilkinson SB, Phillips SM (2008) Resistance training alters the response of fed state mixed muscle protein synthesis in young men. Am J Physiol Regul Integr Comp Physiol 294(1):172–178. https://doi.org/10.1152/ajpregu.00636.2007

    Article  CAS  Google Scholar 

  2. Burd NA, West DWD, Staples AW, Atherton PJ, Baker JM, Daniel R, Holwerda AM, Parise G, Rennie MJ, Baker SK, Phillips SM (2010) Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men. PLoS One 5(8):e12033. https://doi.org/10.1371/journal.pone.0012033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Phillips SM, Parise G, Roy B, Tipton R, Wolfe R, Tarnopolsky MA (2002) Resistance-training-induced adaptations inskeletal muscle protein turnover in the fed state. Can J Physiol Pharmacol 80(11):1045–1053. https://doi.org/10.1139/y02-134

    Article  CAS  PubMed  Google Scholar 

  4. Aagaard P, Andersen JL, Dyhre-Poulsen P, Leffers AM, Wagner A, Peter Magnusson S, Halkjær-Kristensen J, Simonsen EB (2001) A mechanism for increased contractile strength of human pennate muscle in response to strength training: Changes in muscle architecture. J Physiol 534(2):613–623. https://doi.org/10.1111/j.1469-7793.2001.t01-1-00613.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Balshaw TG, Massey GJ, Maden-Wilkinson TM, Lanza MB, Folland JP (2019) Neural adaptations after 4 years vs 12 weeks of resistance training vs untrained. Scand J Med Sci Sport 29(3):348–359. https://doi.org/10.1111/sms.13331

    Article  Google Scholar 

  6. Balshaw TG, Massey GJ, Maden-Wilkinson TM, Morales-Artacho AJ, McKeown A, Appleby CL, Folland JP (2017) Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. Eur J Appl Physiol 117(4):631–640. https://doi.org/10.1007/s00421-017-3560-x

    Article  PubMed  Google Scholar 

  7. Damas F, Libardi CA, Ugrinowitsch C (2017) The development of skeletal muscle hypertrophy through resistance training: the role of muscle damage and muscle protein synthesis. Eur J Appl Physiol 118(3):485–500. https://doi.org/10.1007/s00421-017-3792-9

    Article  CAS  PubMed  Google Scholar 

  8. Damas F, Phillips SM, Libardi CA, Vechin FC, Lixandrão ME, Jannig R, Costa LAR, Bacurau AV, Snijders T, Parise G, Tricoli V, Roschel H, Ugrinowitsch C (2016) Muscle protein synthesis, hypertrophy, and muscle damage in humans. J Physiol 594(18):5209–5222. https://doi.org/10.1113/JP272472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blazevich AJ, Gill ND, Deans N, Zhou S (2007) Lack of human muscle architectural adaptation after short-term strength training. Muscle and Nerve 35(1):78–86. https://doi.org/10.1002/mus.20666

    Article  PubMed  Google Scholar 

  10. Seynnes OR, De Boer M, Narici MV (2007) Early skeletal muscle hypertrophy and architectural changes in response to high-intensity resistance training. J Appl Physiol 102(1):368–373. https://doi.org/10.1152/japplphysiol.00789.2006

    Article  CAS  PubMed  Google Scholar 

  11. Weier AT, Pearce AJ, Kidgell DJ (2012) Strength training reduces intracortical inhibition. Acta Physiol 206(2):109–119. https://doi.org/10.1016/j.juro.2017.04.076

    Article  CAS  Google Scholar 

  12. Hakkinen K, Alen M, Komi PV (1985) Changes in isometric force- and relaxation-time, electromyographic and muscle fibre characteristics of human skeletal muscle during strength training and detraining. Acta Physiol Scand 125(4):573–585. https://doi.org/10.1111/j.1748-1716.1985.tb07760.x

    Article  CAS  PubMed  Google Scholar 

  13. Seguin R, Nelson ME (2003) The benefits of strength training for older adults. Am J Prev Med 25(3):141–149. https://doi.org/10.1016/s0749-3797(03)00177-6

    Article  PubMed  Google Scholar 

  14. Lynch GS (2004) Tackling Australia’s future health problems: Developing strategies to combat sarcopenia - Age-related muscle wasting and weakness. Intern Med J 34(5):294–296. https://doi.org/10.1111/j.1444-0903.2004.00568.x

    Article  CAS  PubMed  Google Scholar 

  15. Srikanthan P, Karlamangla AS (2011) Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the Third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 96(9):2898–2903. https://doi.org/10.1210/jc.2011-0435

    Article  CAS  PubMed  Google Scholar 

  16. Srikanthan P, Karlamangla AS (2014) Muscle Mass Index as a Predictor of Longevity in Older-Adults. Perit Dial Int 127(6):547–553. https://doi.org/10.1016/j.amjmed.2014.02.007

    Article  Google Scholar 

  17. Figueroa A, Okamoto T, Jaime SJ, Fahs CA (2019) Impact of high- and low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. Eur J Physiol 471(3):467-478. https://doi.org/10.1007/s00424-018-2235-8

    Article  CAS  Google Scholar 

  18. Myers AM, Beam NW, Fakhoury JD (2017) Resistance training for children and adolescents. Transl Pediatr 6(3):137-143. https://doi.org/10.21037/tp.2017.04.01

    Article  PubMed  PubMed Central  Google Scholar 

  19. Legerlotz K (2018) The Effects of Resistance Training on Health of Children and Adolescents With Disabilities. Am J Lifestyle Med 14(4):382-396. https://doi.org/10.1177/1559827618759640

    Article  PubMed  PubMed Central  Google Scholar 

  20. Penfield W, Rasmussen T (1950) The cerebral cortex of man; a clinical study of localization of function. JAMA 144(16):1412. https://doi.org/10.1111/j.1460-9568.2005.04098.x

    Article  Google Scholar 

  21. Ebbesen CL, Brecht M (2017) Motor cortex—To act or not to act? Nat Rev Neurosci 18(11):694–705. https://doi.org/10.1038/nrn.2017.119

    Article  CAS  PubMed  Google Scholar 

  22. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91(4):1447–1531. https://doi.org/10.1152/physrev.00031.2010

    Article  CAS  PubMed  Google Scholar 

  23. Henneman E, Somjen G, Carpenter D (1965) Functional significance of cell size in spinal motoneurons. J Neurophysiol 28:560–580. https://doi.org/10.1152/jn.1965.28.3.560

    Article  CAS  PubMed  Google Scholar 

  24. Aagaard P (2003) Training-induced changes in neural function. Exerc Sport Sci Rev 31(2):61–67. https://doi.org/10.1097/00003677-200304000-00002

    Article  PubMed  Google Scholar 

  25. Vigotsky AD, Halperin I, Lehman GJ, Trajano GS, Vieira TM (2018) Interpreting signal amplitudes in surface electromyography studies in sport and rehabilitation sciences. Front Physiol 8:985. https://doi.org/10.3389/fphys.2017.00985

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kidgell DJ, Bonanno DR, Frazer AK, Howatson G, Pearc AJ (2017) Corticospinal responses following strength training: a systematic review and meta- analysis. Eur J Neurosci 46(11):2648–2661. https://doi.org/10.1111/ejn.13710

    Article  PubMed  Google Scholar 

  27. Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ (2020) Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-analysis. Sport Med 50(6):1107–1128. https://doi.org/10.1007/s40279-020-01258-z

    Article  Google Scholar 

  28. Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, Felici F, Farina D (2019) The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 597(7):1873–1887. https://doi.org/10.1113/JP277250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sterczala AJ, Miller JD, Dimmick HL, Wray ME, Trevino MA, Herda TJ (2020) Eight weeks of resistance training increases strength, muscle cross-sectional area and motor unit size, but does not alter firing rates in the vastus lateralis. Eur J Appl Physiol 120(1):281–294. https://doi.org/10.1007/s00421-019-04273-9

    Article  PubMed  Google Scholar 

  30. Scripture EW, Smith TL, Brown EM (1984) On the education of muscular control and power. Stud Yale Psychol Lab 2:114–119.

    Google Scholar 

  31. Netreba AI, Bravyi IR, Makarov VA, Ustiuzhanin DV, Vinogradova OL (2011) Evaluation of training efficacy for improving maximal voluntary contraction without noticeable hypertrophy. Hum Physiol 37(6):89-97. (In Russ).

    Article  CAS  Google Scholar 

  32. Ruddy KL, Carson RG (2013) Neural pathways mediating cross education of motor function. Front Hum Neurosci 7:1–22. https://doi.org/10.3389/fnhum.2013.00397

    Article  Google Scholar 

  33. Phillips SM, Tipton KD, Ferrando AA, Wolfe RR (1999) Resistance training reduces the acute exercise-induced increase in muscle protein turnover. Am J Physiol 276(1):118–124. https://doi.org/10.1152/ajpendo.1999.276.1.E118

    Article  Google Scholar 

  34. Goodman CA (2014) The Role of mTORC1 in Regulating Protein Synthesis and Skeletal Muscle Mass in Response to Various Mechanical Stimuli. Rev Physiol Biochem Pharmacol 166:43–95. https://doi.org/10.1007/112_2013_17

    Article  CAS  PubMed  Google Scholar 

  35. Drummond MJ, Fry CS, Glynn EL, Dreyer HC, Dhanani S, Timmerman KL, Volpi E, Rasmussen BB (2009) Rapamycin administration in humans blocks the contraction-induced increase in skeletal muscle protein synthesis. J Physiol 587(7):1535–1546. https://doi.org/10.1113/jphysiol.2008.163816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terzis G, Georgiadis G, Stratakos G, Vogiatzis I, Kavouras S, Manta P, Mascher H, Blomstrand E (2008) Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects. Eur J Appl Physiol 102(2):145–152. https://doi.org/10.1007/s00421-007-0564-y

    Article  CAS  PubMed  Google Scholar 

  37. Mitchell WK, Wilkinson DJ, Phillips BE, Lund JN, Smith K, Atherton PJ (2016) Human Skeletal Muscle Protein Metabolism Responses to Amino Acid Nutrition. Adv Nutr 7(4):828S-838S. https://doi.org/10.3945/an.115.011650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burd NA, Tang JE, Moore DR, Phillips SM (2009) Exercise training and protein metabolism : influences of contraction, protein intake, and sex-based differences. J Appl Physiol 106(5):1692–1701. https://doi.org/10.1152/japplphysiol.91351.2008

    Article  CAS  PubMed  Google Scholar 

  39. Proud CG (2007) Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J 403(2):217–234. https://doi.org/10.1042/BJ20070024

    Article  CAS  PubMed  Google Scholar 

  40. Greenhaff PL, Karagounis LG, Peirce N, Simpson EJ, Hazell M, Layfield R, Wackerhage H, Smith K, Atherton P, Selby A, Rennie MJ (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295(3):595–604. https://doi.org/10.1152/ajpendo.90411.2008

    Article  CAS  Google Scholar 

  41. O’Neil TK, Duffy LR, Frey JW, Hornberger TA (2009) The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions. J Physiol 587(14):3691-3701. https://doi.org/10.1113/jphysiol.2009.173609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wackerhage H, Schoenfeld BJ, Hamilton DL, Lehti M, Hulmi JJ (2019) Stimuli and sensors that initiate skeletal muscle hypertrophy following resistance exercise. J Appl Physiol 126(1):30–43. https://doi.org/10.1152/japplphysiol.00685.2018

    Article  CAS  PubMed  Google Scholar 

  43. Goodman CA (2019) Role of mTORC1 in mechanically induced increases in translation and skeletal muscle mass. J Appl Physiol 127(2):581–590. https://doi.org/10.1152/japplphysiol.01011.2018

    Article  CAS  PubMed  Google Scholar 

  44. Lysenko EA, Popov DV, Vepkhvadze TF, Sharova AP, Vinogradova OL (2019) Signaling responses to high and moderate moderate load strength exercise in trained muscle. Physiol Rep 7(9):1–9. https://doi.org/10.14814/phy2.14100

    Article  CAS  Google Scholar 

  45. Terzis G, Spengos K, Mascher H, Georgiadis G, Manta P, Blomstrand E (2010) The degree of p70 S6k and S6 phosphorylation in human skeletal muscle in response to resistance exercise depends on the training volume. Eur J Appl Physiol 110(4):835–843. https://doi.org/10.1007/s00421-010-1527-2

    Article  CAS  PubMed  Google Scholar 

  46. Kumar V, Selby A, Rankin D, Patel R, Atherton P, Hildebrandt W, Williams J, Smith K, Seynnes O, Hiscock N, Rennie MJ (2009) Age-related differences in the dose-response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol 587(1):211–217. https://doi.org/10.1113/jphysiol.2008.164483

    Article  CAS  PubMed  Google Scholar 

  47. Westad C, Westgaard RH, De Luca CJ (2003) Motor unit recruitment and derecruitment induced by brief increase in contraction amplitude of the human trapezius muscle. J Physiol 552(2):645–656. https://doi.org/10.1113/jphysiol.2003.044990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Dankel SJ, Jessee MB, Mattocks KT, Mouser JG, Counts BR, Buckner SL, Loenneke JP (2016) Training to Fatigue: The Answer for Standardization When Assessing Muscle Hypertrophy? Sport Med 47(6):1021–1027. https://doi.org/10.1007/s40279-016-0633-7

    Article  Google Scholar 

  49. Morton RW, Sonne MW, Zuniga AF, Mohammad IYZ, Jones A, McGlory C, Keir PJ, Potvin JR, Phillips SM (2019) Muscle fibre activation is unaffected by load and repetition duration when resistance exercise is performed to task failure. J Physiol 597(17):4601–4613. https://doi.org/10.1113/JP278056

    Article  CAS  PubMed  Google Scholar 

  50. Fujita S, Abe T, Drummond MJ, Cadenas JG, Dreyer HC, Sato Y, Volpi E, Rasmussen BB (2007) Blood flow restriction during low-intensity resistance exercise increases S6K1 phosphorylation and muscle protein synthesis. J Appl Physiol 103(3):903–910. https://doi.org/10.1152/japplphysiol.00195.2007

    Article  CAS  PubMed  Google Scholar 

  51. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N (2000) Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 88(6):2097–2106. https://doi.org/10.1152/jappl.2000.88.6.2097

    Article  CAS  PubMed  Google Scholar 

  52. Popov DV, Tsvirkun DV, Netreba AI, Tarasova OS, Prostova AB, Larina IM, Borovik AS, Vinogradova OL (2006) Hormonal adaptation determines the increase in muscle mass and strength during low-intensity strength training without relaxation. Hum Physiol 32(5):121–127. (In Russ).

    Article  CAS  Google Scholar 

  53. Popov DV, Lysenko EA, Bachinin AV, Miller TF, Kurochkina NS, Kravchenko IV, Furalyov VA, Vinogradova OL (2014) Influence of resistance exercise intensity and metabolic stress on anabolic signaling and expression of myogenic genes in skeletal muscle. Muscle Nerve 51(3):434–442. https://doi.org/10.1002/mus.24314

    Article  CAS  Google Scholar 

  54. Gavanda S, Isenmann E, Schlöder Y, Roth R, Freiwald J, Schiffer T, Geisler S, Behringer M (2020) Low-intensity blood flow restriction calf muscle training leads to similar functional and structural adaptations than conventional low- load strength training? A randomized controlled trial. PLoS One 15(6):e0235377. https://doi.org/10.1371/journal.pone.0235377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kraemer WJ, Ratamess NA (2005) Hormonal Responses and Adaptations to Resistance Exercise and Training. Sport Med 35(4):339–361. https://doi.org/10.2165/00007256-200535040-00004

    Article  Google Scholar 

  56. Fink J, Schoenfeld BJ, Nakazato K (2018) The role of hormones in muscle hypertrophy. Phys Sport Med 46(1):129–134. https://doi.org/10.1080/00913847.2018.1406778

    Article  Google Scholar 

  57. Hakkinen K, Pakarinen A, Alen M, Kauhanen H, Komi PV (1988) Neuromuscular and hormonal adaptations in athletes to strength training in two years. J Appl Physiol 65(6):2406–2412. https://doi.org/10.1152/jappl.1988.65.6.2406

    Article  CAS  PubMed  Google Scholar 

  58. HÄkkinen K, Pakarinen A, Alén M, Komi PV (1985) Serum hormones during prolonged training of neuromuscular performance. Eur J Appl Physiol Occup Physiol 53(4):287–293. https://doi.org/10.1007/BF00422840

    Article  PubMed  Google Scholar 

  59. Morton RW, Sato K, Gallaugher MPB, Oikawa SY, McNicholas PD, Fujita S, Phillips SM (2018) Muscle androgen receptor content but not systemic hormones is associated with resistance training induced skeletal muscle hypertrophy in healthy, young men. Front Physiol 9:1373. https://doi.org/10.3389/fphys.2018.01373

    Article  PubMed  PubMed Central  Google Scholar 

  60. Phillips SM, Baker SK, Churchward-Venne TA, Parise G, Bellamy L, Mitchell CJ (2013) Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy. PLoS One 8(10):e78636. https://doi.org/10.1371/journal.pone.0078636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wyce A, Bai Y, Nagpal S, Thompson CC (2010) Research resource: The androgen receptor modulates expression of genes with critical roles in muscle development and function. Mol Endocrinol 24(8):1665–1674. https://doi.org/10.1210/me.2010-0138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chaillou T, Kirby TJ, Mccarthy JJ (2014) Ribosome Biogenesis: Emerging Evidence for a Central Role in the Regulation of Skeletal Muscle Mass. J Cell Physiol 229(11):1584–1594. https://doi.org/10.1002/jcp.24604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brook MS, Wilkinson DJ, Mitchell WK, Lund JL, Phillips BE, Szewczyk NJ, Kainulainen H, Lensu S, Koch LG, Britton SL, Greenhaff PL, Smith K, Atherton PJ (2017) A novel D2O tracer method to quantify RNA turnover as a biomarker of de novo ribosomal biogenesis, in vitro, in animal models, and in human skeletal muscle. Am J Physiol - Endocrinol Metab 313(6):E681–E689. https://doi.org/10.1152/ajpendo.00157.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mobley CB, Haun CT, Roberson PA, Mumford PW, Kephart WC, Romero MA, Osburn SC, Vann CG, Young KC, Beck DT, Martin JS, Lockwood CM, Roberts MD (2018) Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training. PLoS One 13(4):1–20. https://doi.org/10.1371/journal.pone.0195203

    Article  CAS  Google Scholar 

  65. Reidy PT, Fry CS, Igbinigie S, Deer RR, Jennings K, Cope MB, Mukherjea R, Volpi E, Rasmussen BB (2017) Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training. Med Sci Sports Exerc 49(6):1197–1208. https://doi.org/10.1249/MSS.0000000000001224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hikida RS, Staron RS, Hagerman FC, Walsh S, Kaiser E, Shell S, Hervey S (2000) Effects of High-Intensity Resistance Training on and Nucleo-Cytoplasmic Relationships. Sport Med 55(7):347–354. https://doi.org/10.1093/gerona/55.7.b347

    Article  Google Scholar 

  67. Psilander N, Eftestøl E, Cumming KT, Juvkam I, Ekblom MM, Sunding K, Wernbom M, Holmberg HC, Ekblom B, Bruusgaard JC, Raastad T, Gundersen K (2019) Effects of training, detraining, and retraining on strength, hypertrophy, and myonuclear number in human skeletal muscle. Carbohydr Polym 6(1):5–10. https://doi.org/10.1152/japplphysiol.00917.2018

    Article  Google Scholar 

  68. Baechle T, Earle R (2008) Essentials of Strength Training and Conditioning. Human Kinetics.

    Google Scholar 

  69. Fisher J, Steele J, Smith D (2017) High- and Low-Load Resistance Training: Interpretation and Practical Application of Current Research Findings. Sport Med 47(3):393–400. https://doi.org/10.1007/s40279-016-0602-1

    Article  Google Scholar 

  70. Morton RW, Oikawa SY, Wavell CG, Mazara N, McGlory C, Quadrilatero J, Baechler BL, Baker SK, Phillips SM (2016) Neither load nor systemic hormones determine resistance training-mediated hypertrophy or strength gains in resistance-trained young men. J Appl Physiol 121(1):129–138. https://doi.org/10.1152/japplphysiol.00154.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Schoenfeld BJ, Grgic J, Ogborn D, Krieger JW (2017) Strength and hypertrophy adaptations between low- versus high-load resistance treining: A systematic review and meta-analysis. J Strength Cond Res 48(2):361–378. https://doi.org/10.1519/JSC.0000000000002200

    Article  Google Scholar 

  72. Krieger JW (2010) Single vs. multiple sets of resistance exercise for muscle hypertrophy: a meta-analysis. J Strength Cond Res 24(4):1150–1159. https://doi.org/10.1519/JSC.0b013e3181d4d436

    Article  PubMed  Google Scholar 

  73. Ralston GW, Kilgore L, Wyatt FB, Baker JS (2017) The Effect of Weekly Set Volume on Strength Gain: A Meta-Analysis. Sport Med 47(12):2585–2601. https://doi.org/10.1007/s40279-017-0762-7

    Article  Google Scholar 

  74. Schoenfeld BJ, Ogborn D, Krieger JW (2016) Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy? A Systematic Review and Meta-Analysis. Sport Med 46(11):1689–1697. https://doi.org/10.1007/s40279-016-0543-8

    Article  Google Scholar 

  75. Del Vecchio A, Negro F, Holobar A, Casolo A, Folland JP, Felici F, Farina D (2019) You are as fast as your motor neurons: speed of recruitment and maximal discharge of motor neurons determine the maximal rate of force development in humans. J Physiol 597(9):2445–2456. https://doi.org/10.1113/JP277396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Blazevich AJ, Wilson CJ, Alcaraz PE, Rubio-Arias JA (2020) Effects of Resistance Training Movement Pattern and Velocity on Isometric Muscular Rate of Force Development: A Systematic Review with Meta-analysis and Meta-regression. Sport Med 50(5):943–963. https://doi.org/10.1007/s40279-019-01239-x

    Article  Google Scholar 

  77. Burd NA, Andrews RJ, West DW, Little JP, Cochran AJ, Hector AJ, Cashaback JG, Gibala MJ, Potvin JR, Baker SK, Phillips SM (2012) Muscle time under tension during resistance exercise stimulates differential muscle protein sub-fractional synthetic responses in men. J Physiol 590(2):351–362. https://doi.org/10.1113/jphysiol.2011.221200

    Article  CAS  PubMed  Google Scholar 

  78. Hackett DA, Davies TB, Orr R, Kuang K, Halaki M (2018) Effect of movement velocity during resistance training on muscle-specific hypertrophy: A systematic review. Eur J Sport Sci 18(4):473–482. https://doi.org/10.1080/17461391.2018.1434563

    Article  PubMed  Google Scholar 

  79. Schoenfeld B, Ogborn D, Krieger J (2015) Effect of Repetition Duration During Resistance Training on Muscle Hypertrophy: A Systematic Review and Meta-Analysis. Sport Med 45:577–585. https://doi.org/10.1007/s40279-015-0304-0

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant No. 20-315-70034 “Stability”.

Author information

Authors and Affiliations

Authors

Contributions

E.A.L.—manuscript writing, editing and preparation for publication; O.L.V. and D.V.P.—consultation on research issues, manuscript editing.

Corresponding author

Correspondence to E. A. Lysenko.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no financial or any other interest in biased coverage of the material.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 6–7, pp. 755–772https://doi.org/10.31857/S0869813921060078.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenko, E.A., Vinogradova, O.L. & Popov, D.V. The Mechanisms of Muscle Mass and Strength Increase during Strength Training. J Evol Biochem Phys 57, 862–875 (2021). https://doi.org/10.1134/S0022093021040104

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040104

Keywords:

Navigation