Skip to main content
Log in

Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord

  • Experimental Papers
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

A variety of neural networks in the central nervous system is determined by the heterogeneity of its constituent neuronal populations. Calcium-binding proteins can be used as markers of different neuronal morphotypes. One of the most common calcium-binding proteins in the nervous system is calretinin. In the present work, using an indirect immunohistochemical method, calretinin-immunopositive neuronal populations were labeled in lumbar segments of the cat (Felis catus) spinal cord. We identified nineteen morphotypes of neurons with strictly segmental and laminar distribution patterns, and attempted to compare putative functions of these neurons with the available literature data. Three morphotypes are located in lamina I, corresponding to neurons involved in nociceptive and temperature processing. Lamina II contains neurons of a single morphotype, on which nociceptive afferents converge. Laminae III–IV comprise three types of projection neurons transmitting information from peripheral mechanoreceptors and nociceptors to supraspinal structures. Laminae V–VI are characterized by functionally different neurons of five morphotypes: two types of interneurons localized to the Clarke’s column and analogous zone of the caudal lumbar segments, which collect proprioceptive information; one type of neurons located at the lateral border between the white and gray matter and responding to pain and tactile signals; and two types of irregularly distributed interneurons (projection or propriospinal neurons) that receive heterogeneous afferent signals from muscle spindles. In laminae VII–VIII, there are two types of sympathetic preganglionic neurons (in the intermediolateral and intercalated nuclei), Renshaw interneurons, and three types of multi-sized dispersedly distributed multipolar cells with unidentified functions. No calretinin-immunopositive neurons were found in lamina IX represented by motoneuron pools. In lamina X, sparse neurons reside around the central canal; their function is also obscure due to the paucity of morphological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Islam MdS (2020) Calcium Signaling: From Basic to Bedside. In: Islam MdS (ed) Calcium Signaling. Springer International Publishing, Cham, pp 1–6.

    Chapter  Google Scholar 

  2. Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cellular and Molecular Life Sciences 66:275–300. https://doi.org/10.1007/s00018-008-8564-6

    Article  CAS  PubMed  Google Scholar 

  3. Antal M, Freund TF, Polgár E (1990) Calcium-binding proteins, parvalbumin- and calbindin-D 28k-immunoreactive neurons in the rat spinal cord and dorsal root ganglia: A light and electron microscopic study. Journal of Comparative Neurology 295:467–484.

    Article  CAS  Google Scholar 

  4. Walters MC, Sonner MJ, Myers JH, Ladle DR (2019) Calcium imaging of parvalbumin neurons in the dorsal root ganglia. eNeuro 6:1–16. https://doi.org/10.1523/ENEURO.0349-18.2019

    Article  CAS  Google Scholar 

  5. Ren K, Ruda MA (1994) A comparative study of the calcium-binding proteins calbindin-D28K, calretinin, calmodulin and parvalbumin in the rat spinal cord. Brain Research Reviews 19:163–179. https://doi.org/10.1016/0165-0173(94)90010-8

    Article  CAS  PubMed  Google Scholar 

  6. Hantman AW, Jessell TM (2010) Clarke’s column neurons as the focus of a corticospinal corollary circuit. Nature Neuroscience 13:1233–1239. https://doi.org/10.1038/nn.2637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alvarez FJ, Jonas PC, Sapir T, Hartley R, Berrocal MC, Geiman EJ, Todd AJ, Goulding M (2005) Postnatal phenotype and localization of spinal cord V1 derived interneurons. Journal of Comparative Neurology 493:177–192. https://doi.org/10.1002/cne.20711

    Article  CAS  Google Scholar 

  8. Carr PA, Alvarez FJ, Leman EA, W. Fyffe RE (1998) Calbindin D28k expression in immunohistochemically identified Renshaw cells. NeuroReport 9:2657–2661. https://doi.org/10.1097/00001756-199808030-00043

    Article  CAS  PubMed  Google Scholar 

  9. Merkulyeva N, Veshchitskii A, Makarov F, Gerasimenko Y, Musienko P (2016) Distribution of 28 kDa calbindin-Immunopositive neurons in the cat spinal cord. Frontiers in Neuroanatomy 9:1–13. https://doi.org/10.3389/fnana.2015.00166

    Article  CAS  Google Scholar 

  10. Grkovic I, Anderson CR (1997) Calbindin D28K-immunoreactivity identifies distinct subpopulations of sympathetic pre- and postganglionic neurons in the rat. Journal of Comparative Neurology 386:245–259. https://doi.org/10.1002/(SICI)1096-9861(19970922)386:2<245::AID-CNE6>3.0.CO;2-1

    Article  CAS  Google Scholar 

  11. Strack S, Wadzinski BE, Ebner FF (1996) Localization of the calcium/calmodulin-dependent protein phosphatase, calcineurin, in the hindbrain and spinal cord of the rat. Journal of Comparative Neurology 375:66–76. https://doi.org/10.1002/(SICI)1096-9861(19961104)375:1<66::AID-CNE4>3.0.CO;2-M

    Article  CAS  Google Scholar 

  12. Wonders CP, Anderson SA (2006) The origin and specification of cortical interneurons. Nature Reviews Neuroscience 7:687–696. https://doi.org/10.1038/nrn1954

    Article  CAS  PubMed  Google Scholar 

  13. Winsky L, Kuźnicki J (1995) Distribution of calretinin, calbindin D28k, and parvalbumin in subcellular fractions of rat cerebellum: effects of calcium. Journal of Neurochemistry 65:381–388. https://doi.org/10.1046/j.1471-4159.1995.65010381.x

    Article  CAS  PubMed  Google Scholar 

  14. Münkle MC, Waldvogel HJ, Faull RLM (2000) The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. Journal of Chemical Neuroanatomy 19:155–173. https://doi.org/10.1016/S0891-0618(00)00060-0

    Article  PubMed  Google Scholar 

  15. Ren K, Ruda MA, Jacobowitz DM (1993) Immunohistochemical localization of calretinin in the dorsal root ganglion and spinal cord of the rat. Brain Research Bulletin 31:13–22. https://doi.org/10.1016/0361-9230(93)90004-U

    Article  CAS  PubMed  Google Scholar 

  16. Anelli R, Heckman CJ (2005) The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord. Journal of Neurocytology 34:369–385. https://doi.org/10.1007/s11068-006-8724-2

    Article  CAS  PubMed  Google Scholar 

  17. Camp AJ, Wijesinghe R (2009) Calretinin: Modulator of neuronal excitability. The International Journal of Biochemistry & Cell Biology 41:2118–2121. https://doi.org/10.1016/j.biocel.2009.05.007

    Article  CAS  Google Scholar 

  18. Gerasimenko Y, Roy RR, Edgerton VR (2008) Epidural stimulation: Comparison of the spinal circuits that generate and control locomotion in rats, cats and humans. Experimental Neurology 209:417–425. https://doi.org/10.1016/j.expneurol.2007.07.015

    Article  PubMed  Google Scholar 

  19. Musienko P, Courtine G, Tibbs JE, Kilimnik V, Savochin A, Garfinkel A, Roy RR, Edgerton VR, Gerasimenko Y (2012) Somatosensory control of balance during locomotion in decerebrated cat. Journal of Neurophysiology 107:2072–2082. https://doi.org/10.1152/jn.00730.2011

    Article  PubMed  PubMed Central  Google Scholar 

  20. Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJK, Burdick JW, Roy RR (2008) Training locomotor networks. Brain Research Reviews 57:241–254. https://doi.org/10.1016/j.brainresrev.2007.09.002

    Article  PubMed  Google Scholar 

  21. Merkulyeva N, Lyakhovetskii V, Veshchitskii A, Bazhenova E, Gorskii O, Musienko P (2019) Activation of the spinal neuronal network responsible for visceral control during locomotion. Experimental Neurology 320:112986. https://doi.org/10.1016/j.expneurol.2019.112986

    Article  PubMed  Google Scholar 

  22. Fairless R, Williams SK, Diem R (2019) Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. International Journal of Molecular Sciences 20:2146. https://doi.org/10.3390/ijms20092146

    Article  CAS  PubMed Central  Google Scholar 

  23. Morrison BM, Janssen WGM, Gordon JW, Morrison JH (1998) Light and electron microscopic distribution of the AMPA receptor subunit, GluR2, in the spinal cord of control and G86R mutant superoxide dismutase transgenic mice. Journal of Comparative Neurology 395:523–534. https://doi.org/10.1002/(SICI)1096-9861(19980615)395:4<523::AID-CNE8>3.0.CO;2-3

    Article  CAS  Google Scholar 

  24. Merkulyeva N, Veshchitskii A, Gorsky O, Pavlova N, Zelenin PV, Gerasimenko Y, Deliagina TG, Musienko P (2018) Distribution of spinal neuronal networks controlling forward and backward locomotion. The Journal of Neuroscience 38:4695–4707. https://doi.org/10.1523/JNEUROSCI.2951-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Merkulyeva N, Lyakhovetskii V, Veshchitskii A, Gorskii O, Musienko P (2021) Rostrocaudal distribution of the C-Fos-immunopositive spinal network defined by muscle activity during locomotion. Brain Sciences 11:69. https://doi.org/10.3390/brainsci11010069

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang M, Broman J (1998) Cervicothalamic tract termination: a reexamination and comparison with the distribution of monoclonal antibody Cat-301 immunoreactivity in the cat. Anatomy and Embryology 198:451–472. https://doi.org/10.1007/s004290050196

    Article  CAS  PubMed  Google Scholar 

  27. Shkorbatova PY, Lyakhovetskii VA, Merkulyeva NS, Veshchitskii AA, Bazhenova EY, Laurens J, Pavlova NV, Musienko PE (2019) Prediction algorithm of the cat spinal segments lengths and positions in relation to the vertebrae. The Anatomical Record 302:1628–1637. https://doi.org/10.1002/ar.24054

    Article  PubMed  Google Scholar 

  28. Eldred WD, Zucker C, Karten HJ, Yazulla S (1983) Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. Journal of Histochemistry and Cytochemistry 31:285–292. https://doi.org/10.1177/31.2.6339606

    Article  CAS  PubMed  Google Scholar 

  29. Rogers JH (1987) Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. Journal of Cell Biology 105:1343–1353. https://doi.org/10.1083/jcb.105.3.1343

    Article  CAS  Google Scholar 

  30. Andressen C, Blümcke I, Celio MR (1993) Calcium-binding proteins: selective markers of nerve cells. Cell and Tissue Research 271:181–208. https://doi.org/10.1007/BF00318606

    Article  CAS  PubMed  Google Scholar 

  31. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  32. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. Journal of Comparative Neurology 100:297–379. https://doi.org/10.1002/cne.901000205

    Article  CAS  Google Scholar 

  33. Heise C, Kayalioglu G (2009) Cytoarchitecture of the Spinal Cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Academic Press, San Diego, pp. 64–93

    Chapter  Google Scholar 

  34. Craig AD, Zhang ET, Blomqvist A (2002) Association of spinothalamic lamina I neurons and their ascending axons with calbindin-immunoreactivity in monkey and human. PAIN 97:105–115. https://doi.org/10.1016/S0304-3959(02)00009-X

    Article  CAS  PubMed  Google Scholar 

  35. Han Z-S, Zhang E-T, Craig AD (1998) Nociceptive and thermoreceptive lamina I neurons are anatomically distinct. Nature Neuroscience 1:218–225. https://doi.org/10.1038/665

    Article  CAS  PubMed  Google Scholar 

  36. Lima D, Avelino A, Coimbra A (1993) Morphological characterization of marginal (Lamina I) neurons immunoreactive for substance P, enkephalin, dynorphin and gamma-aminobutyric acid in the rat spinal cord. Journal of Chemical Neuroanatomy 6:43–52. https://doi.org/10.1016/0891-0618(93)90006-P

    Article  CAS  PubMed  Google Scholar 

  37. Grudt TJ, Perl ER (2002) Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. The Journal of Physiology 540:189–207. https://doi.org/10.1113/jphysiol.2001.012890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ (2010) Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 151:475–488. https://doi.org/10.1016/j.pain.2010.08.008

    Article  PubMed  PubMed Central  Google Scholar 

  39. Todd AJ (2010) Neuronal circuitry for pain processing in the dorsal horn. Nature Reviews Neuroscience 11:823–836. https://doi.org/10.1038/nrn2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Smith KM, Browne TJ, Davis OC, Coyle A, Boyle KA, Watanabe M, Dickinson SA, Iredale JA, Gradwell MA, Jobling P, Callister RJ, Dayas CV, Hughes DI, Graham BA (2019) Calretinin positive neurons form an excitatory amplifier network in the spinal cord dorsal horn. eLife 8:e49190. https://doi.org/10.7554/eLife.49190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Peirs C, Williams S-PG, Zhao X, Arokiaraj CM, Ferreira DW, Noh M, Smith KM, Halder P, Corrigan KA, Gedeon JY, Lee SJ, Gatto G, Chi D, Ross SE, Goulding M, Seal RP (2021) Mechanical allodynia circuitry in the dorsal horn is defined by the nature of the Injury. Neuron 109:73-90.e7. https://doi.org/10.1016/j.neuron.2020.10.027

    Article  CAS  PubMed  Google Scholar 

  42. Gatto G, Bourane S, Ren X, Di Costanzo S, Fenton PK, Halder P, Seal RP, Goulding MD (2021) A functional topographic map for spinal sensorimotor reflexes. Neuron 109:91-104.e5. https://doi.org/10.1016/j.neuron.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  43. Willis WD, Coggeshall RE (2004) Functional Organization of Dorsal Horn Interneurons. In: Willis WD, Coggeshall RE (eds) Sensory Mechanisms of the Spinal Cord: Volume 1 Primary Afferent Neurons and the Spinal Dorsal Horn. Springer US, Boston, MA, pp 271–388. https://doi.org/10.1007/978-1-4615-0035-3_7

    Chapter  Google Scholar 

  44. Al-Khater KM, Todd AJ (2009) Collateral projections of neurons in laminae I, III, and IV of rat spinal cord to thalamus, periaqueductal gray matter, and lateral parabrachial area. Journal of Comparative Neurology 515:629–646. https://doi.org/10.1002/cne.22081

    Article  Google Scholar 

  45. Abraira VE, Kuehn ED, Chirila AM, Springel MW, Toliver AA, Zimmerman AL, Orefice LL, Boyle KA, Bai L, Song BJ, Bashista KA, O’Neill TG, Zhuo J, Tsan C, Hoynoski J, Rutlin M, Kus L, Niederkofler V, Watanabe M, Dymecki SM, Nelson SB, Heintz N, Hughes DI, Ginty DD (2017) The cellular and synaptic architecture of the mechanosensory dorsal horn. Cell 168:295-310.e19. https://doi.org/10.1016/j.cell.2016.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Maxwell DJ, Fyffe REW, Rethelyi M (1983) Morphological properties of physiologically characterized lamina III neurones in the cat spinal cord. Neuroscience 10:1–22. https://doi.org/10.1016/0306-4522(83)90076-3

    Article  CAS  PubMed  Google Scholar 

  47. Naim M, Spike RC, Watt C, Shehab SAS, Todd AJ (1997) Cells in laminae III and IV of the rat spinal cord that possess the Neurokinin-1 receptor and have dorsally directed dendrites receive a major synaptic input from tachykinin-containing primary afferents. Journal of Neuroscience 17:5536–5548. https://doi.org/10.1523/JNEUROSCI.17-14-05536.1997

    Article  CAS  PubMed  Google Scholar 

  48. Larsson M (2017) Pax2 is persistently expressed by GABAergic neurons throughout the adult rat dorsal horn. Neuroscience Letters 638:96–101. https://doi.org/10.1016/j.neulet.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  49. Merkul’eva NS, Veshchitskii AA, Shkorbatova PYu, Shenkman BS, Musienko PE, Makarov FN (2017) Morphometric characteristics of the dorsal nuclei of Clarke in the rostral segments of the lumbar part of the spinal cord on cats. Neuroscience and Behavioral Physiology 47:851–856. https://doi.org/10.1007/s11055-017-0481-4

    Article  Google Scholar 

  50. Vega JA, Cobo J (2021) Structural and biological basis for proprioception. In: Proprioception. https://doi.org/10.5772/intechopen.96787

    Chapter  Google Scholar 

  51. Loewy AD (1970) A study of neuronal types in Clarke’s column in the adult cat. Journal of Comparative Neurology 139:53–79. https://doi.org/10.1002/cne.901390104

    Article  CAS  Google Scholar 

  52. Burke RE, Rudomin P (2011) Spinal neurons and synapses. In: Comprehensive physiology. American cancer society. pp 877–944. https://doi.org/10.1002/cphy.cp010124

    Chapter  Google Scholar 

  53. Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: Calcium binding proteins and gene expression profile in the mouse. Neuroscience Letters 518:161–166. https://doi.org/10.1016/j.neulet.2012.05.002

    Article  CAS  PubMed  Google Scholar 

  54. Snyder RL, Faull RLM, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, Cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 181:833–852. https://doi.org/10.1002/cne.901810409

    Article  CAS  Google Scholar 

  55. Olude MA, Idowu AO, Mustapha OA, Olopade JO, Akinloye AK (2015) Spinal cord studies in the African Giant Rat (Cricetomys gambianus, Waterhouse). Nigerian journal of physiological sciences 30:25–32

    CAS  PubMed  Google Scholar 

  56. Watson C, Sengul G, Tanaka I, Rusznak Z, Tokuno H (2015) The spinal cord of the common marmoset (Callithrix jacchus). Neuroscience Research 93:164–175. https://doi.org/10.1016/j.neures.2014.12.012

    Article  PubMed  Google Scholar 

  57. Hongo T, Jankowska E, Ohno T, Sasaki S, Yamashita M, Yoshida K (1983) The same interneurones mediate inhibition of dorsal spinocerebellar tract cells and lumbar motoneurones in the cat. The Journal of Physiology 342:161–180. https://doi.org/10.1113/jphysiol.1983.sp014845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 184:81–105. https://doi.org/10.1002/cne.901840106

    Article  CAS  Google Scholar 

  59. Kuo DC, Nadelhaft I, Hisamitsu T, de Groat WC (1983) Segmental distribution and central projectionsof renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. Journal of Comparative Neurology 216:162–174. https://doi.org/10.1002/cne.902160205

    Article  CAS  Google Scholar 

  60. Morgan C, de Groat WC, Nadelhaft I (1986) The spinal distribution of sympathetic preganglionic and visceral primary afferent neurons that send axons into the hypogastric nerves of the cat. Journal of Comparative Neurology 243:23–40. https://doi.org/10.1002/cne.902430104

    Article  CAS  Google Scholar 

  61. Ritz LA, Greenspan JD (1985) Morphological features of lamina V neurons receiving nociceptive input in cat sacrocaudal spinal cord. Journal of Comparative Neurology 238:440–452. https://doi.org/10.1002/cne.902380408

    Article  CAS  Google Scholar 

  62. Moschovakis AK, Solodkin M, Burke RE (1992) Anatomical and physiological study of interneurons in an oligosynaptic cutaneous reflex pathway in the cat hindlimb. Brain Research 586:311–318. https://doi.org/10.1016/0006-8993(92)91641-Q

    Article  CAS  PubMed  Google Scholar 

  63. Brown AG, Fyffe RE (1978) The morphology of group Ia afferent fibre collaterals in the spinal cord of the cat. The Journal of Physiology 274:111–127. https://doi.org/10.1113/jphysiol.1978.sp012137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Riddell JS, Hadian M (2000) Interneurones in pathways from group II muscle afferents in the lower-lumbar segments of the feline spinal cord. The Journal of Physiology 522:109–123. https://doi.org/10.1111/j.1469-7793.2000.t01-2-00109.xm

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Molenaar I, Kuypers HGJM (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Research 152:429–450. https://doi.org/10.1016/0006-8993(78)91102-2

    Article  CAS  PubMed  Google Scholar 

  66. Deuschl G, Illert M (1981) Cytoarchitectonic organization of lumbar preganglionic sympathetic neurons in the cat. Journal of the Autonomic Nervous System 3:193–213. https://doi.org/10.1016/0165-1838(81)90063-1

    Article  CAS  PubMed  Google Scholar 

  67. Edwards SL, Anderson CR, Southwell BR, McAllen RM (1996) Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70:825–832. https://doi.org/10.1016/S0306-4522(96)83019-3

    Article  CAS  PubMed  Google Scholar 

  68. Anderson CR, Keast JR, McLachlan EM (2009) Spinal Autonomic Preganglionic Neurons: the visceral efferent system of the spinal cord. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Academic Press, San Diego, pp 115–129

    Chapter  Google Scholar 

  69. Baron R, Jan̈ig W, McLachlan EM (1985) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat. III. The colonic nerves, incorporating an analysis of all components of the lumbar prevertebral outflow. Journal of Comparative Neurology 238:158–168. https://doi.org/10.1002/cne.902380204

    Article  CAS  Google Scholar 

  70. Renshaw B (1946) Central effects of centripetal impulses in axons of spinal ventral roots. Journal of Neurophysiology 9:191–204. https://doi.org/10.1152/jn.1946.9.3.191

    Article  CAS  PubMed  Google Scholar 

  71. Alvarez FJ, Benito-Gonzalez A, Siembab VC (2013) Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Annals of the New York Academy of Sciences 1279:22–31. https://doi.org/10.1111/nyas.12084

    Article  CAS  PubMed  Google Scholar 

  72. Matsushita M (1999) Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. Journal of Comparative Neurology 404:21–32. https://doi.org/10.1002/(SICI)1096-9861(19990201)404:1<21::AID-CNE2>3.0.CO;2-7

    Article  CAS  Google Scholar 

  73. Moran-Rivard L, Kagawa T, Saueressig H, Gross MK, Burrill J, Goulding M (2001) Evx1 Is a postmitotic determinant of V0 interneuron identity in the spinal cord. Neuron 29:385–399. https://doi.org/10.1016/S0896-6273(01)00213-6

    Article  CAS  PubMed  Google Scholar 

  74. Jankowska E (2013) Spinal Interneurons. In: Pfaff DW (ed) Neuroscience in the 21st Century: From Basic to Clinical. Springer, New York, NY, pp 1063–1099. https://doi.org/10.1113/jphysiol.2012.248740

    Chapter  Google Scholar 

  75. Morona R, Northcutt RG, González A (2010) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Lungfishes. Brain, Behavior and Evolution 76:198–210. https://doi.org/10.1159/000321326

    Article  PubMed  Google Scholar 

  76. Berg EM, Bertuzzi M, Ampatzis K (2018) Complementary expression of calcium binding proteins delineates the functional organization of the locomotor network. Brain Structure and Function 223:2181–2196. https://doi.org/10.1007/s00429-018-1622-4

    Article  CAS  PubMed  Google Scholar 

  77. Morona R, Moreno N, López JM, González A (2006) Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. Journal of Comparative Neurology 494:763–783. https://doi.org/10.1002/cne.20836

    Article  CAS  Google Scholar 

  78. Morona R, López JM, González A (2006) Calbindin-D28k and calretinin immunoreactivity in the spinal cord of the lizard Gekko gecko: Colocalization with choline acetyltransferase and nitric oxide synthase. Brain Research Bulletin 69:519–534. https://doi.org/10.1016/j.brainresbull.2006.02.022

    Article  CAS  PubMed  Google Scholar 

  79. Deuchars SA, Lall VK (2015) Sympathetic preganglionic neurons: properties and inputs. Comprehensive Physiology 5:829–869. https://doi.org/10.1002/cphy.c140020

    Article  PubMed  Google Scholar 

  80. Kayalioglu G, Robertson B, Kristensson K, Grant G (1999) Nitric oxide synthase and interferon-gamma receptor immunoreactivities in relation to ascending spinal pathways to thalamus, hypothalamus, and the periaqueductal grey in the rat. Somatosensory & Motor Research 16:280–290. https://doi.org/10.1080/08990229970348

    Article  CAS  Google Scholar 

  81. Bertrand S, Cazalets J-R (2002) The respective contribution of lumbar segments to the generation of locomotion in the isolated spinal cord of newborn rat. European Journal of Neuroscience 16:1741–1750. https://doi.org/10.1046/j.1460-9568.2002.02233.x

    Article  CAS  Google Scholar 

  82. De Groat WC, Yoshimura N (2010) Changes in afferent activity after spinal cord injury. Neurourology and Urodynamics 29:63–76. https://doi.org/10.1002/nau.20761

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N.S. Pavlova and P.Yu. Shkorbatova for the assistance in perfusion and dissection of the material.

Funding

This study was supported by the State Program 47 GP “Scientific and Technological Development of the Russian Federation” (2019–2030), theme no. 0134-2019-0006 (theoretical part), and Russian Science Foundation, grant no. 21-15-00235 (experimental part).

Author information

Authors and Affiliations

Authors

Contributions

Planning and design of the experiment (N.S.M., P.E.M); histological preparations (N.S.M., A.A.V.); data collection and processing (A.A.V.); writing and editing of a manuscript (A.A.V., N.S.M., P.E.M.).

Corresponding author

Correspondence to N. S. Merkulyeva.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have neither evident nor potential conflict of interest related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, 2021, Vol. 57, No. 4, pp. 344–360https://doi.org/10.31857/S0044452921040082.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veshchitskii, A.A., Musienko, P.E. & Merkulyeva, N.S. Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord. J Evol Biochem Phys 57, 817–834 (2021). https://doi.org/10.1134/S0022093021040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021040074

Keywords:

Navigation