Skip to main content
Log in

RAFT (Co)polymerization of 1,1,1,3,3,3-Hexafluoroisopropyl Acrylate as the Synthesis Technique of Amphiphilic Copolymers

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The reversible addition-fragmentation chain transfer (RAFT) polymerization of 1,1,1,3,3,3-hexafluoroisopropyl acrylate (HFIPA) in the presence of dibenzyl carbonotrithioate (BTC) was studied. The effect of solvent used in polymerization process on kinetic features and molecular-weight characteristics was shown. It turns out that polymerization of HFIPA proceeds in a control mode at any conditions investigated that is confirmed by linear increase of Mn with the rise of conversion and low values of dispersity (Đ = 1.09–1.3). The location of trithiocarbonate group was estimated both quantum-chemical calculation and experimental methods. Copolymerization monomer pairs of HFIPA-acrylic acid and HFIPA-tert-butyl acrylate in the presence of low molecular (BTC) and polymeric chain transfer agent were investigated. Reactivity ratios of monomers was determined by Fineman-Ross and Kelen-Tudos models. The use of polymeric RAFT agent leads to instance of preferential solvation effect and formation of copolymer with gradient microstructure at final conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. A. Braunecker and K. Matyjaszewski, Prog. Polym. Sci., 32, 93 (2007).

    Article  CAS  Google Scholar 

  2. C. Barner-Kowollik, Handbook of RAFT Polymerization, Wiley, Weinheim, 2008.

    Book  Google Scholar 

  3. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001).

    Article  CAS  Google Scholar 

  4. V. Sciannamea, R. Jérôme, and C. Detrembleur, Chem. Rev., 108, 1104 (2008).

    Article  CAS  Google Scholar 

  5. G. Moad, E. Rizzardo, and S. H. Thang, Acc. Chem. Res., 41, 1133 (2008).

    Article  CAS  Google Scholar 

  6. D. S. H. Chu, J. G. Schellinger, J. Shi, A. J. Convertine, P. S. Stayton, and S. H. Pun, Acc. Chem. Res., 45, 1089 (2012).

    Article  CAS  Google Scholar 

  7. G. Moad, E. Rizzardo, and S. H. Thang, Aust. J. Chem., 59, 669 (2006).

    Article  CAS  Google Scholar 

  8. Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 32, 2071 (1999).

    Article  CAS  Google Scholar 

  9. Y. K. Chong, G. Moad, E. Rizzardo, and S. H. Thang, Macromolecules, 40, 4446 (2007).

    Article  CAS  Google Scholar 

  10. B. Ameduri, Macromolecules, 43, 10163 (2010).

    Article  CAS  Google Scholar 

  11. J. A. Gladysz, D. P. Curran, and I. T. Horvath, Handbook of Fluorous Chemistry, Wiley-VCH, New York, 2004.

    Book  Google Scholar 

  12. P. G. Falireas, V. Ladmiral, and B. Ameduri, Polym. Chem., 12, 277 (2021).

    Article  CAS  Google Scholar 

  13. E. Amado and J. Kressler, Soft Matter, 7, 7144 (2011).

    Article  CAS  Google Scholar 

  14. S. D. Zaitsev, Y. D. Semchikov, E. V. Vasil’eva, and L. V. Kurushina, J. Polym. Sci. Part B: Polym. Phys., 54, 205 (2012).

    CAS  Google Scholar 

  15. B. P. Koiry, M. Moukwa, and N. K. Singha, J. Fluorine Chem., 153, 137 (2013).

    Article  CAS  Google Scholar 

  16. A. Grigoreva, E. Polozov, and S. Zaitsev, J. Fluorine Chem., 232, 109484 (2020).

    Article  CAS  Google Scholar 

  17. B. P. Koiry, H. Klok, and N. K. Singha, J. Fluorine Chem., 165, 109 (2014).

    Article  CAS  Google Scholar 

  18. T. Y. Guo, D. Tang, M. Song, and B. Zhang, J. Polym. Sci. Part A: Polym. Chem., 45, 5067 (2007).

    Article  CAS  Google Scholar 

  19. S. Xu and W. Liu, J. Fluorine Chem., 129, 125 (2008).

    Article  CAS  Google Scholar 

  20. Y. Jiang, L. Li, J. Liu, R. Wang, H. Wang, Q. Tian, and X. Li, J. Fluorine Chem., 183, 82 (2016).

    Article  CAS  Google Scholar 

  21. N. S. Serkhacheva, O. I. Smirnov, A. V. Tolkachev, N. I. Prokopov, A. V. Plutalova, E. V. Chernikova, and A. R. Khokhlov, RSC Adv., 7, 24522 (2017).

    Article  Google Scholar 

  22. S. R. Samanta, R. Cai, and V. Percec, Polym. Chem., 6, 3259 (2015).

    Article  CAS  Google Scholar 

  23. G. David, C. Boyer, J. Tonnar, B. Ameduri, P. Lacroix-Desmazes, and B. Boutevin, Chem. Rev., 106, 3936 (2006).

    Article  CAS  Google Scholar 

  24. S. Clerc, J. Tonnar, and P. Lacroix-Desmazes, Eur. Polym. J., 49, 682 (2013).

    Article  CAS  Google Scholar 

  25. M. Guerre, J. Schmidt, Y. Talmon, B. Ameduri, and V. Ladmiral, Polym. Chem., 8, 1125 (2017).

    Article  CAS  Google Scholar 

  26. M. Guerre, M. Semsarilar, F. Godiard, B. Ameduri, and V. Ladmiral, Polym. Chem., 8, 1477 (2017).

    Article  CAS  Google Scholar 

  27. Q. Yang, M. Guerre, V. Ladmiral, and B. Ameduri, Polym. Chem., 9, 3388 (2018).

    Article  CAS  Google Scholar 

  28. A. Grigoreva, E. Polozov, and S. Zaitsev, Colloid Polym. Sci., 297, 1423 (2009).

    Article  Google Scholar 

  29. D. V. Vishnevetskii, E. V. Chernikova, E. S. Garina, and E. V. Sivtsov, J. Polym. Sci. Part B: Polym. Phys., 55, 1221 (2013).

    Google Scholar 

  30. W. L. F. Armarego and C. Chai, Purification of Laboratory Chemicals, 7th ed., Butterworth-Heinemann, Oxford, 2012.

    Google Scholar 

  31. E. V. Chernikova, P. S. Terpugova, E. S. Garina, and V. B. Golubev, Polym. Sci. Ser. A, 49, 108 (2007).

    Article  Google Scholar 

  32. M. R. Wood, D. J. Duncalf, P. Findlay, S. P. Rannard, and S. Perrier, Aust. J. Chem., 60, 772 (2007).

    Article  CAS  Google Scholar 

  33. T. Sato, K. Masaki, K. Kondo, M. Seno, and H. Tanaka, Polym. Bull., 35, 345 (1995).

    Article  CAS  Google Scholar 

  34. E. V. Chernikova and E. V. Sivtsov, J. Polym. Sci. Part B: Polym. Phys., 59, 117 (2017).

    CAS  Google Scholar 

  35. B. Canniccioni, S. Monge, G. David, and J. J. Robin, Polym. Chem., 4, 3676 (2013).

    Article  CAS  Google Scholar 

  36. M. Benaglia, E. Rizzardo, A. Alberti, and M. Guerra, Macromolecules, 38, 3129 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Project No.19-03-00843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Grigoreva.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigoreva, A., Tarankova, K. & Zaitsev, S. RAFT (Co)polymerization of 1,1,1,3,3,3-Hexafluoroisopropyl Acrylate as the Synthesis Technique of Amphiphilic Copolymers. Macromol. Res. 29, 524–533 (2021). https://doi.org/10.1007/s13233-021-9066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9066-8

Keywords

Navigation