Skip to main content
Log in

Preparation of Re-Dispersible Metal-Oxide Nanocomposite Particles Using Ionomers with Different EW for Enhanced Radical Scavenging Performance

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Inorganic free radical scavengers are used to suppress the radical attack and chemical degradation of perfluorosulfonic acid (PSFA) ionomer membranes. However, the commercially available radical scavengers have the shortcomings of nano dispersibility and formation of ionically crosslinked complexes with PSFA chains resulting in aggregation and reduced chemical stability. In this study, a new strategy to synthesize highly dispersible metal oxide-ionomer (MO-I) nanocomposite particles using various equivalent weight (EW) of ionomers, is addressed for obtaining effective radical scavengers which ensure the re-dispersibility and colloidal stability in the ionomer dispersions. The effect of the EW of the ionomer and selection of metal precursors on the solubility of metal precursors in the ionomer solution, the solubility of ionomer in the solvent, re-dispersibility, and colloidal stability of MO-I nanocomposite particles in the ionomer solution were also studied. Under given conditions, it was proved that MO-I nanocomposite particles prepared by using cerium nitrate precursor showed the best radical scavenging performance in the presence of EW800 ionomer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Kreuer, Solid State Ion., 97, 1 (1997).

    Article  CAS  Google Scholar 

  2. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. Schuster, Chem. Rev., 104, 4637 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. F. A. de Bruijn, V. A. T. Dam, and G. J. M. Janssen, Fuel Cells, 8, 3 (2008).

    Article  CAS  Google Scholar 

  4. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, Appl. Energy, 88, 981 (2011).

    Article  CAS  Google Scholar 

  5. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, J. Zhang, J. Shen, S. Wu, and W. Merida, J. Power Sources, 184, 104 (2008).

    Article  CAS  Google Scholar 

  6. H. Zhao and A. F. Burke, J. Power Sources, 186, 408 (2009).

    Article  CAS  Google Scholar 

  7. M. Danilczuk, F. D. Coms, and S. Schlick, J. Phys. Chem. B, 113, 8031 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. T. Ishimoto and M. Koyama, Membranes (Basel), 2, 395 (2012).

    Article  CAS  Google Scholar 

  9. X. Luo, L. Ghassemzadeh, and S. Holdcroft, Int. J. Hydrog. Energy, 40, 16714 (2015).

    Article  CAS  Google Scholar 

  10. M. Zatoń, J. Rozière, and D. J. Jones, Sustain. Energy Fuels, 1, 409 (2017).

    Article  Google Scholar 

  11. V. D. C. Tinh and D. Kim, J. Membr. Sci., 613, 118517 (2020).

    Article  CAS  Google Scholar 

  12. Z. Rui and J. Liu, Prog. Nat. Sci-Mater., 30, 732 (2020).

    Article  CAS  Google Scholar 

  13. K. Kim, J. Bae, M.-Y. Lim, P. Heo, S.-W. Choi, H.-H. Kwon, and J.-C. Lee, J. Membr. Sci., 525, 125 (2017).

    Article  CAS  Google Scholar 

  14. M. J. Parnian, S. Rowshanzamir, A. K. Prasad, and S. G. Advani, J. Membr. Sci., 556, 12 (2018).

    Article  CAS  Google Scholar 

  15. S. I. Oh, S. Y. Lee, J. J. Ko, J. H. Han, and H.-J. Kim, ECS Meet. Abstr., 1, 1785 (2018).

    Article  Google Scholar 

  16. L. Wang, S. G. Advani, and A. K. Prasad, Electrochim. Acta, 109, 775 (2013).

    Article  CAS  Google Scholar 

  17. F. D. Coms, H. Liu, and J. Owejan, ECS Trans, 16, 1735 (2008).

    Article  CAS  Google Scholar 

  18. H. Lee, M. Han, Y.-W. Choi, B. Bae, J. Power Sources, 295, 221 (2015).

    Article  CAS  Google Scholar 

  19. L. Gubler and W. H. Koppenol, Kinetic J. Electrochem. Soc., 159, 211 (2011).

    Article  CAS  Google Scholar 

  20. P. Trogadas, J. Parrondo, and V. Ramani, ACS Appl. Mater. Interfaces, 4, 5098 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. W. Zhao, T. Haolin, Z. Huijie, L. Ming, C. Rui, X. Pan, and P. Mu, J. Membr. Sci., 421, 201 (2012).

    Google Scholar 

  22. C.-H. Song and J.-S. Park, Energies, 12, 549 (2019).

    Article  CAS  Google Scholar 

  23. J.-S. Park and Y.-W. Choi, Chem. Lett., 42, 998 (2013).

    Article  CAS  Google Scholar 

  24. H. Uchida, Y. Ueno, H. Hagihara, and M. Watanabe, J. Electrochem. Soc., 150, 57 (2002).

    Article  CAS  Google Scholar 

  25. J.-S. Park, M.-S. Shin, and C.-S. Kim, Curr. Opin. Electrochem., 5, 43 (2017).

    Article  CAS  Google Scholar 

  26. I. Radev, K. Koutzarov, A. Pfrang, and G. Tsotridis, Int. J. Hydrogen Energy, 37, 11862 (2012).

    Article  CAS  Google Scholar 

  27. A. Suzuki, U. Sen, T. Hattori, R. Nagumo, H. Tsuboi, N. Hatakeyama, H. Takaba, M. C. Williams, and A. Miyamoto, Int. J. Hydrogen Energy, 36, 2221 (2011).

    Article  CAS  Google Scholar 

  28. C. Sicard, M. Perullini, C. Spedalieri, T. Coradin, R. Brayner, J. Livage, M. Jobbágy, and S.-A. Bilmes, Chem. Mater., 23, 1374 (2011).

    Article  CAS  Google Scholar 

  29. M. Aguirre, M. Paulis, and J. R. Leiza, J. Mater. Chem. A, 1, 3155 (2013).

    Article  CAS  Google Scholar 

  30. A. Pinna, C. Figus, B. Lasio, M. Piccinini, L. Malfatti, and P. Innocenzi, ACS Appl. Mater. Interfaces, 4, 3916 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. H. L. Tang and M. Pan, J. Phys. Chem. C, 112, 11556 (2008).

    Article  CAS  Google Scholar 

  32. H. Tang, Z. Wan, M. Pan, and S. P. Jiang, Electrochem. Commun., 9, 2003 (2007).

    Article  CAS  Google Scholar 

  33. J. J. Pan, H. N. Zhang, W. Chen, and M. Pan, Int. J. Hydrogen Energy, 35, 2796 (2010).

    Article  CAS  Google Scholar 

  34. K. Li, G. B. Ye, J. J. Pan, H. N. Zhang, and M. Pan, J. Membr. Sci., 347, 26 (2010).

    Article  CAS  Google Scholar 

  35. K. Zhou, X. Wang, X. Sun, Q. Peng, and Y. Li, J. Catal., 229, 206 (2005).

    Article  CAS  Google Scholar 

  36. H. Oh and S. Kim, Aerosol Sci., 38, 1185 (2007).

    Article  CAS  Google Scholar 

  37. M. Kamruddin, P. K. Ajikumar, R. Nithya, A. K. Tyagi, and B. Raj, Scr. Mater., 50, 417 (2004).

    Article  CAS  Google Scholar 

  38. J. Xu, G. Li, and L. Li, Mater. Res. Bull., 43, 990 (2008).

    Article  CAS  Google Scholar 

  39. E. N. Ndifor, T. Garcia, B. Solsona, and S. H. Taylor, Appl. Catal. B: Environ., 76, 248 (2007).

    Article  CAS  Google Scholar 

  40. A. Hadi and I. I. Yaacob, Mater Lett., 61, 93 (2007).

    Article  CAS  Google Scholar 

  41. J. C. Yu, L. Zhang, and J. Lin, J. Colloid Interface Sci., 260, 240 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. R. H. Petrucci, F. G. Herring, J. D. Madura, and C. Bissonnette, General Chemistry: Principles and Modern Applications, Upper Saddle River, New Jersey, 2011.

  43. H. D. Nathan and C. Henrickson, Chemistry, New York, Wiley, 2001.

    Google Scholar 

  44. Z. Xie, T. Navessin, X. Zhao, M. Adachi, S. Holdcroft, T. Mashio, A. Ohma, and K. Shinohara, ECS Trans., 16, 1811 (2008)

    Article  CAS  Google Scholar 

  45. M. So, T. Ohnishi, K. Park, M. Ono, Y. Tsuge, G. Inoue, Int. J. Hydrogen Energy, 44, 28984 (2019).

    Article  CAS  Google Scholar 

  46. C. Welch, A. Labouriau, R. Hjelm, B. Orler, C. Johnston, and Y. S. Kim, ACS Macro Lett., 1, 1403 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. M. Yamaguchi, T. Matsunaga, K. Amemiya, A. Ohira, N. Hasegawa, K. Shinohara, M. Ando, and T. Yoshida, J. Phys. Chem. B, 118, 14922 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. S. Jiang, K.-Q. Xia, and G. Xu, Macromolecules, 34, 7783 (2001).

    Article  CAS  Google Scholar 

  49. L. Rubatat, G. Gebel, and D. O. Fibrillar, Macromolecules, 37, 7772 (2004).

    Article  CAS  Google Scholar 

  50. N. H. Jalani and R. Datta, J. Membr. Sci., 264, 167 (2005).

    Article  CAS  Google Scholar 

  51. W. G. Grot, Macromol. Symp., 82, 161 (1994).

    Article  CAS  Google Scholar 

  52. T. Mabuchi, S.-F. Huang, and T. Tokumasu, Macromolecules, 53, 3273 (2020).

    Article  CAS  Google Scholar 

  53. E. M. Dietze, P. N. Plessow, and F. Studt, J. Phys. Chem. C, 123, 25464 (2019).

    Article  CAS  Google Scholar 

  54. C. Welch, A. Labouriau, R. Hjelm, B. Orler, C. Johnston, and Y.-S. Kim, ACS Macro Lett., 1, 1403 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. R. B. Moore and C. R. Martin, Macromolecules, 21, 1334 (1988).

    Article  CAS  Google Scholar 

  56. P. Aldebert, G. Gebel, B. Loppinet, and N. Nakamura, Polymer, 36, 431 (1995).

    Article  CAS  Google Scholar 

  57. E. S. Pietek, S. Schlick, and A. Plonka, Langmuir, 10, 1101 (1994).

    Article  Google Scholar 

  58. R. D. Lousenberg, J. Polym. Sci., Part B: Polym. Phys., 43, 421 (2005).

    Article  CAS  Google Scholar 

  59. P. W. Ayers, J. S. M. Anderson, J. I. Rodriguez, and Z. Jawed, Phys. Chem. Chem. Phys., 7, 1918 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. J. E. Huheey, E. A. Keiter, and R. L. Keiter, in Inorganic Chemistry: Principles of Structure and Reactivity, Harper Collins, New York, 1993.

    Google Scholar 

  61. D. Zhao, B. L. Yi, H. M. Zhang, and H. M. Yu, J. Membr. Sci., 346, 143 (2010).

    Article  CAS  Google Scholar 

  62. C. D’Urso, C. Oldani, V. Baglio, L. Merlo, and A. S. Arico, J. Power Sources, 301, 317 (2016).

    Article  CAS  Google Scholar 

  63. T. Tanuma and T. Itoh, J. Power Sources, 305, 17 (2016).

    Article  CAS  Google Scholar 

  64. J.-H. Ahn, M. I. Ali, J.-H. Lim, Y. Park, I.-K. Park, D. Duchesne, L. Chen, J. Y. Kim, and C. H. Lee, Membranes, 11, 143 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. E. Beche, P. Charvin, D. Perarnau, S. Abanades, and G. Flamant, Surf. Interface Anal., 40, 264 (2008).

    Article  CAS  Google Scholar 

  66. L. Qiu, F. Liu, L. Zhao, and M. Y. Yao, J. Appl. Surf. Sci., 252, 4931 (2006).

    Article  CAS  Google Scholar 

  67. F. Larachi, J. Pierre, A. Adnot, and A. Bernis, Appl. Surf. Sci., 195, 236 (2002).

    Article  CAS  Google Scholar 

  68. R. J. Chung, M. F. Hsieh, R. N. Panda, and T. S. Chin. Surf. Coat. Technol., 165, 194 (2003).

    Article  CAS  Google Scholar 

  69. P. Burroughs, A. Hamnett, A. F. Orchard, and G. Thornton, J. Chem. Soc., Dalton Trans., 17, 1686 (1976).

    Article  Google Scholar 

  70. A. Kotani, T. Jo, and J. C. Parlebas, Adv. Phys., 37, 37 (1988).

    Article  CAS  Google Scholar 

  71. J. Shen, A. Liu, and Y. Tu, Electrochim. Acta, 78, 22 (2012).

    Article  CAS  Google Scholar 

  72. D. P. Dubal, D. S. Dhawale, R. R. Salunkhe, and C. D. Lokhande, J. Electrochem. Soc., 157, 812 (2010).

    Article  CAS  Google Scholar 

  73. A. Barrera, F. Tzompantzi, J. C. Molina, J. E. Casillas, R. P. Hernandez, S. U. Godinez, C. Velasquez, and J. A. Alatorre, RSC Adv., 8, 3108 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. T. L. Barr, J. Phys. Chem., 82, 1801 (1978).

    Article  CAS  Google Scholar 

  75. B. Strohmeier, Surf. Sci. Spectra, 3, 135 (1995).

    Article  Google Scholar 

  76. Z. Wang, S. Tian, B. Shao, S. Li, L. Li, and J. Yang, J. Power Sources, 414, 327 (2019).

    Article  CAS  Google Scholar 

  77. S. S. Lee, W. Song, M. Cho, H. L. Puppala, P. Nguyen, H. Zhu, L. Segatori, and V. L. Colvin, ACS Nano, 7, 9693 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant funded by the Korean Government (2019M2EA1064109). This study was supported in part by the 2020 Post Doc. Researcher Supporting Program from Kangwon National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juyoung Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irshad, M., Lee, C.H. & Kim, J. Preparation of Re-Dispersible Metal-Oxide Nanocomposite Particles Using Ionomers with Different EW for Enhanced Radical Scavenging Performance. Macromol. Res. 29, 551–561 (2021). https://doi.org/10.1007/s13233-021-9068-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9068-6

Keywords

Navigation