Skip to main content
Log in

Dominant nature of 7-hydroxy 4-methyl coumarin dye on thermal, fluorescence and antimicrobial properties of PVA/OMS blend films

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This article focused on the fabrication of 7-hydroxy 4- methyl coumarin (7H4MC) dye doped Polyvinyl alcohol/Oxidized Maize Starch (PVA/OMS) blend films by employing user friendly solvent casting technique. The thermal stability, crystallanity, surface morphology and optical properties of the films were investigated by using Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), Fluorescence (FL) and Ultraviolet–Visible (UV–Vis) Spectroscopy respectively. The TGA and DSC results illustrate that the blend films are thermally stable and miscible over the entire composition. The XRD analysis confirmed the semi crystalline nature of all the obtained films with the intense peak at 2θ = 19. 49°. The AFM topographic images had shown a smoother and homogeneous surface at the higher weight percentage of 7H4MC of blend films. The UV–Visible spectra display the absorption peaks at 325 nm for control PVA/OMS and two peaks at 329 nm, 370 nm arises after doping of 7H4MC in PS blend associated with π-π* electronic transition may be due to the charge transfer (CT) groups. The optical band gap is reduced on the addition of 7H4MC dye in the control blend. The fluorescence spectra revealed that the fabricated films exhibited good blue light emission under ultraviolet light and shows maximum fluorescence emission at 442 nm for 0.008 wt. % of 7H4MC. Moreover PSC blend films exhibited superior antimicrobial properties as compare to control blend film. Hence, the obtained outcomes are suggested that the PVA/OMS (PSC) blend films are appropriate materials for optical and biological application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Darbent R, Olsewska T (1981) Anisotropy of poly (vinyl alcohol) films in the u.v. and i.r. regions of the spectrum. Polymer. https://doi.org/10.1016/0032-3861(81)90381-5

  2. Padmakumari R, Ravindrachary V, Mahantesha BK, Sahanakumari R, Bhajantri RF, Mallikarjun HA (2019) Dopant dependent microstructural and fluorescence properties of biodegradable polymer films for DSSC application. IOP Conf Ser J Phys. https://doi.org/10.1088/1742-6596/1172/1/012079

  3. Faraga AAM, Osiris WG, El-Shazlya EAA (2011) Structural and optical characterizations of pyronine B thin films and its photovoltaic applications. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2011.03.096

    Article  Google Scholar 

  4. Nandimath M, Bhajantri RF (2020) Dominant role of pyronin B on structural, optical and fluorescence properties of chemically synthesized ZnO loaded PVA polymer nanocomposites. Opt Mater. https://doi.org/10.1016/j.optmat.2020.109892

    Article  Google Scholar 

  5. Padmakumari1 R, Ravindrachary V, Mahantesha BK, Rohan NS, Sahanakumari R, Bhajantri RF (2018) Modification of fluorescence and optical properties of rhodamine B dye doped PVA/chitosan polymer blend films. AIP Conf Proc. http://aip.scitation.org/toc/apc/1953/1

  6. Khan A, Parwaz Khan AA et al (2019) Facial synthesis of highly active polymer vanadium molybdate nanocomposite: improved thermoelectric and antimicrobial studies. J Phys Chem Solid. https://doi.org/10.1016/j.jpcs.2019.03.022

  7. Piramidowicz R, Jusza A, Lipinska L, Gil M, Mergo P (2019) RE3þ:LaALO3 doped luminescent polymer composites. Opt Mater. https://doi.org/10.1016/j.optmat.2018.06.018

  8. Esfahani ZH, Ghanipour M, Dorranian D (2014) Effect of dye concentration on the optical properties of red-BS dye-doped PVA film. Theor Appl Phys. https://doi.org/10.1007/s40094-014-0139-3

    Article  Google Scholar 

  9. Sareen S, Nagaraja GK, Jagadish N, Bhajanthri RF (2017) Development and characterization study of silk fibre reinforced poly(vinyl alcohol) composites. Int J Plast Technol. https://doi.org/10.1007/s12588-017-9174-7

  10. Hamzah M, Ndimba RM, Khenfouch M, Srinivasu VV (2017) Blue luminescence from hydrothermal ZnO nanorods based PVA nanofibers. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-017-7000-9

  11. Zhua X, Houa X, Mab B, Xua H, Yang Y (2019) Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115311

    Article  Google Scholar 

  12. Tang X, Alavi S (2011) Recent advances in starch, polyvinyl alcohol based polymer blends. nanocomposites and their biodegradability. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2011.01.030

  13. Bing H (2016) Properties of oxidized starch prepared by hydrogen peroxide, chlorine dioxide and sodium hypochlorite. International Conference on Biomedical and Biological Engineering. 447–451

  14. Horn MM, Martins VCA, Plepis AMG (2011) Effects of starch gelatinization and oxidation on the rheological behavior of chitosan/starch blends. Polym Int. https://doi.org/10.1002/pi.3021

    Article  Google Scholar 

  15. Vanier NL, Mello El Halal SL, Guerra Dias AR, Zavareze EDR (2017) Molecular structure, functionality and applications of oxidized starches: A review. Food Chem. https://doi.org/10.1016/j.foodchem.2016.10.138

    Article  PubMed  Google Scholar 

  16. Chen Z, Zhang L, Wang L (2011) Study on filming of oxidized starch/PVA. Front Agric China. https://doi.org/10.1007/s11703-011-1143-x

  17. Dao PH, Nam TT, Phuc MV, Hiep NA, Thanh TV, Vuong NT, Xuan DD (2017) Oxidized maize starch: characterization and effect of it on the biodegradable films.ii. Infrared spectroscopy, solubility of oxidized starch and starch film solubility. Vietnam J Sci Technol. https://doi.org/10.15625/2525-2518/55/4/7919

  18. Kong W, Wang W, Gao J, Liu T, Liub Y (2011) Oxidized starch films reinforced with natural halloysite. J Mater Res. https://doi.org/10.1557/jmr.2011.359

    Article  Google Scholar 

  19. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. 14963248. https://doi.org/10.1155/2013/963248

  20. Nandimath M, Bhajantri RF, Naik J, Hebbar V (2019) Impact of coumarin on optical, structural and thermal properties of TiO2@ZnO core-shell filled PMMA matrix. AIP Conf Proc. https://doi.org/10.1063/1.5112913

  21. Nursel A, Feride B, Kadir D (2012) Polymers based on methacrylate bearing coumarin side group: synthesis via free radical polymerization, monomer reactivity ratios, dielectric behavior, and thermal stabilities. Polym Sci. https://doi.org/10.5402/2012/352759

    Article  Google Scholar 

  22. Trenor R, Allan RS, Brian JL, Timothy EL (2004) Coumarins in polymers: from light harvesting to photo-cross-linkable tissue scaffolds. Scott Chem Rev. https://doi.org/10.1021/cr030037c

    Article  Google Scholar 

  23. Sukumaran VS, Ramalingam (2005) A Spectral characteristics and nonlinear studies of acridine orange dye. Phys Let A. https://doi.org/10.1016/j.physleta.2005.05.012

    Article  Google Scholar 

  24. Mark MD, Balam SKK, Umamaheswara RN, Baktavathsala R, Manoj KS, Adeppa K, Syama SC, Cirandur SR, Krishna M (2015) Synthesis and bio-evaluation of novel 7-hydroxy coumarin derivatives via Knoevenagel reaction. Res Chem Intermed. https://doi.org/10.1007/s11164-013-1258-1

    Article  Google Scholar 

  25. Mounir AIS, Magda IM, Azza ME (2016) Synthesis and characterization of some new coumarins with in vitro antitumor and antioxidant activity and high protective effects against DNA damage. Molecules. https://doi.org/10.3390/molecules21020249

    Article  Google Scholar 

  26. Rahman L, Tin S, Rahma AR, Sama AA (2010) Thermal behaviour and interactions of cassava starch filled with glycerol plasticized polyvinyl alcohol blends. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2010.03.052

    Article  Google Scholar 

  27. Hiremani VD, Sataraddi S, Bayannavar PK, GastiT MSP, Kamble RR, Chougale RB (2020) Mechanical, optical and antioxidant properties of 7-Hydroxy-4-methyl coumarin doped polyvinyl alcohol/oxidized maize starch blend films. SN Applied Sciences. https://doi.org/10.1007/s42452-020-03399-2

    Article  Google Scholar 

  28. Sreedhar B, Chattopadhyay DK, Sri Hari KM, Sastry ARK (2006) Thermal and surface characterization of plasticized starch polyvinyl alcohol blends crosslinked with epichlorohydrin. J Appl Polym Sci. https://doi.org/10.1002/app.23145

    Article  Google Scholar 

  29. Dongying Hu, Haixia W, Lijuan W (2016) Physical properties and antibacterial activity of quaternized chitosan/carboxymethyl cellulose blend films. LWT Food Sci Technol. https://doi.org/10.1016/j.lwt.2015.08.033

    Article  Google Scholar 

  30. Yin M, Chen X, Li R, Huang D, Fan X, Ren X, Huang TS (2016) Preparation and characterization of antimicrobial PVA hybrid films with N-halamine modified chitosan nanospheres. J Appl Polym Sci. https://doi.org/10.1002/app.44204

    Article  Google Scholar 

  31. Aydina AA, Ilberg V (2016) Effect of different polyol-based plasticizers on thermalproperties of polyvinyl alcohol:starch blends. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2015.08.093

    Article  Google Scholar 

  32. Wu Z, Wu J, Peng T, Li Y, Lin D, Xing B, Li C, Yang Y, Yang L, Zhang L, Ma R, Wu W, Lv X, Dai J, Han G (2017) Preparation and application of starch/polyvinyl alcohol/citric acid ternary blend antimicrobial functional food packaging films. Polymers. https://doi.org/10.3390/polym9030102

  33. González-Forte LDS, Pardini OR, Javier I, Amalvy (2016) Starch / polyvinyl alcohol blends containing polyurethane as plasticizer. J Compos Biodegradable. Polym. https://doi.org/10.12974/2311-8717.2016.04.01.1

  34. Sreedhar B, Sairam M, Chattopadhyay DK, Syamala Rathnam PA, Mohan Rao DV (2005) Thermal, mechanical, and surface characterization of starch–poly(vinyl alcohol) blends and borax-crosslinked films. J Appl Polym Sci. https://doi.org/10.1002/app.21439

  35. Anandalli MH, Bhajantri RF, Rathod SG, Kanakaraj TM, Chavan C, Chalawadi S (2019) Mechanical and thermal Studies of brilliant green dye doped Poly(vinyl alcohol) Polymer Composite. AIP Conference Proceedings https://doi.org/10.1063/1.5113061

    Google Scholar 

  36. Kandaswamy N, Raveendiran N (2015) Synthesis, characterization, in vitroantimicrobial and anticancer evaluation of random copolyesters bearing biscoumarin units in the main chains. Res Chem Intermed. https://doi.org/10.1063/1.5113061

    Google Scholar 

  37. Gaidukov S, Danilenko I, Gaidukova G (2015) Characterization of strong and crystalline polyvinyl alcohol/montmorillonite films prepared by layer-by-layer deposition method. Int J Polym Sci. https://doi.org/10.1155/2015/123469

    Article  Google Scholar 

  38. Corrales T, Peinado C, Bosch P, Catalina F (2004) Study of secondary relaxations of poly(ethylene terephthalate) by photoluminescence technique. Polymer. https://doi.org/10.1016/j.polymer.2003.12.051

  39. Baraker BM, Lobo B (2016) Experimental study of PVA-PVP blend films doped with cadmium chloride monohydrate. Indian J Pure Appl Phys 54:634–640

    Google Scholar 

  40. Kasai D, Chougale R, Masti S, Chalannavar R, Malabadi R, Gani R (2018) Influence of Syzygiumcumini leaves extract on morphological, thermal, mechanical, and antimicrobial properties of PVA and PVA/chitosan blend films. J Appl Polym Sci. https://doi.org/10.1002/app.46188

    Article  Google Scholar 

  41. Hebbar V, Bhajantri RF, Naik J, Rathod SG (2016) Thiazole yellow G dyed PVA films for optoelectronics: microstructrural, thermal and photophysical studies. Mater Res Express. https://doi.org/10.1088/2053-1591/3/7/075301

    Article  Google Scholar 

  42. Bhajantri RF, Ravindrachary V, Poojary B, Ismayil HA, Crasta V (2009) Studies on fluorescent PVA + PVP + MPDMAPP composite films. Polym Eng Sci. https://doi.org/10.1002/pen

    Article  Google Scholar 

  43. Madhuri SN, Hemalatha KS, Rukmani K (2019) Preparation and investigation of suitability of gadolinium oxide nanoparticle doped polyvinyl alcohol films for optoelectronic applications. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-019-01237-9

    Article  Google Scholar 

  44. Kundachira SN, Siddaramaiah (2015) Opto-Electrical Characteristics of Poly(vinyl alcohol)/Cesium Zincate Nanodielectrics. J Phys Chem C. https://doi.org/10.1021/acs.jpcc.5b03652

    Article  Google Scholar 

  45. Malatesh SP, Shirajahammad MH, Delicia AB, Vani RD, Shivaprasadagouda P, Shyam KV, Ashok HS (2020) Synthesis of cerium-oxide NPs and their surface morphology effect on biological activities. Bull Mater Sci. https://doi.org/10.1007/s12034-019-1962-6

  46. Mallikarjun HA, Rajashekhar FB, Shivaraj RM, Parutagouda SP (2021) Impact of brilliant green dye on structural, linear, and third-order nonlinear optical properties of poly(vinyl alcohol) polymer composites for optoelectronic applications. J Mater Res. https://doi.org/10.1557/s43578-021-00289-0

    Article  Google Scholar 

  47. Xu L, Zhang Y, Pan H, Xu N, Mei C, Mao H, Zhang W, Cai J, Xu C (2020) Preparation and performance of radiata-pine-derived polyvinyl alcohol/carbon quantum dots fluorescent films. Materials. https://doi.org/10.3390/ma13010067

    Article  PubMed  PubMed Central  Google Scholar 

  48. Aslam M, Ali Kalyar M, Raza ZA (2018) Investigation of structural and thermal properties of distinct nanofllers doped PVA composite films. Polym Bull. https://doi.org/10.1007/s00289-018-2367-1

    Article  Google Scholar 

  49. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2018.06.123

    Article  PubMed  Google Scholar 

  50. Phetdaphat B, Apinya S, Kaewta K, Sirinya C, Antonios K, Chiraphon C (2020) Modified cassava starch/poly(vinyl alcohol) blend films plasticized by glycerol: Structure and properties. J Appl Polym Sci. https://doi.org/10.1002/APP.48848

    Article  Google Scholar 

  51. Hu D, Wang L (2016) Physical and antibacterial properties of polyvinyl alcohol films reinforcedwith quaternized cellulose. J Appl Polym Sci. https://doi.org/10.1002/app.43552

    Article  Google Scholar 

  52. Vinod KG, Bhanu P, Deepak P, Amar SS (2014) Synthesis, characterization and antibacterial activity of biodegradable Starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2014.03.044

    Article  Google Scholar 

  53. Amar SS, Bhanu P, Deepak P (2015) Cornstarch/Poly(vinyl alcohol) Biocomposite Blend Films: Mechanical Properties, Thermal Behavior, Fire Retardancy, and Antibacterial Activity. Int J Polym Anal Charact. https://doi.org/10.1080/1023666X.2015.1018491

    Article  Google Scholar 

  54. Oliver K, Herbert K (1999) Antibacterial activity of simple coumarins: structural requirements for biological activity. https://doi.org/10.1515/znc-1999-3-405

    Article  Google Scholar 

  55. Bojan S, Maja M, Milan C, Lars G (2013) 4-Methyl-7-hydroxycoumarin antifungal and antioxidant activity enhancement by substitution with thiosemicarbazide and thiazolidinone moieties. Food Chem. https://doi.org/10.1016/j.foodchem.2013.01.027

    Article  Google Scholar 

  56. Chang J, Jian Z, Lili Y, Chenglu W, Yijia Y, Xing R, Ke X, Maoping C (2019) Antifungal Activity of Coumarin Against Candida albicans Is Related to Apoptosis. Front Cell Infect Microbiol. https://doi.org/10.3389/fcimb.2018.00445

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for instrumental facilities provided by University Scientific Instruments Centre (USIC), DST Sophisticated Analytical Instrument Facilities (SAIF), DST PURSE Phase II project (Program Grant No. SR/PURSE PHASE-2/13), Karnataka University, Dharwad, Karnataka, India. The authors express their heartfelt gratitude to Mr. Mahantesh Kurbet, Manager, Quality Control Department, Millennium Starch India, Pvt. Ltd., Athani, Karnataka, India, for a generous gift of oxidized maize starch. One of the author, Mr. Vishram D. Hiremani, would like to thank Karnatak University, Dharwad, Karnataka, India. for providing University Research Studentship. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra B. Chougale.

Ethics declarations

Conflict of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiremani, V.D., Anandalli, M.H., Gasti, T. et al. Dominant nature of 7-hydroxy 4-methyl coumarin dye on thermal, fluorescence and antimicrobial properties of PVA/OMS blend films. J Polym Res 28, 353 (2021). https://doi.org/10.1007/s10965-021-02720-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02720-w

Keywords

Navigation