Skip to main content

Advertisement

Log in

Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

This article presents a thermal sintering method to fabricate porous bone tissue engineering scaffolds based on polycaprolactone (PCL), polylactic acid (PLA), and their composites. The mechanical properties, porous structure, biodegradability, and biocompatibility of sintered scaffolds were evaluated. The scaffolds showed a porosity in the range of 86–91% with a pore size of 75 m\(\mu\) to 400 m\(\mu\). PCL/PLA composite scaffolds showed a Young’s modulus of around 49 MPa, which was between the modulus values of PCL (24 MPa) and PLA (63 MPa) scaffolds. Fibroblast cells (SNL) exhibited spreading and adhesion on the scaffolds, and scaffolds demonstrated a significant difference in the osteogenic differentiation of human mesenchymal stem cells (hMSCs) after 7 and 14 days of culture in comparison with the control (tissue culture polystyrene). Our results demonstrated that the thermally sintered PCL/PLA composite scaffold could be a promising candidate for bone tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmadzadeh Y, Babaei A, Goudarzi A (2018) Assessment of localization and degradation of ZnO nano-particles in the PLA/PCL biocompatible blend through a comprehensive rheological characterization. Polym Degrad Stab 158:136–147

    Article  CAS  Google Scholar 

  • Barral V, Dropsit S, Cayla A, Campagne C, Devaux É (2021) Study of the influence of PCL on the in vitro degradation of Extruded PLA monofilaments and melt-spun filaments. Polymers 13(2):171

    Article  CAS  PubMed Central  Google Scholar 

  • Carvalho JR, Conde G, Antonioli ML, Dias PP, Vasconcelos RO, Taboga SR, Canola PA, Chinelatto MA, Pereira GT, Ferraz GC (2020) Biocompatibility and biodegradation of poly (lactic acid)(PLA) and an immiscible PLA/poly (ε-caprolactone)(PCL) blend compatibilized by poly (ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polym J 52(6):629–643

    Article  CAS  Google Scholar 

  • Deng M, Gu Y, Liu Z, Qi Y, Ma GE, Kang N (2015) Endothelial differentiation of human adipose-derived stem cells on polyglycolic acid/polylactic acid mesh. Stem cells Int 2015:1–15

    Article  Google Scholar 

  • Fang R, Zhang E, Xu L, Wei S (2010) Electrospun PCL/PLA/HA based nanofibers as scaffold for osteoblast-like cells. J Nanosci Nanotechnol 10(11):7747–7751

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari-Bohlouli P, Zahedi P, Shahrousvand M (2020) Enhanced osteogenesis using poly (l-lactide-co-d, l-lactide)/poly (acrylic acid) nanofibrous scaffolds in presence of dexamethasone-loaded molecularly imprinted polymer nanoparticles. Int J Biol Macromol 165:2363–2377

    Article  CAS  PubMed  Google Scholar 

  • Ghaffari-Bohlouli P, Jafari H, Khatibi A, Bakhtiari M, Tavana B, Zahedi P, Shavandi A (2021) Osteogenesis enhancement using poly (l-lactide-co-d, l-lactide)/poly (vinyl alcohol) nanofibrous scaffolds reinforced by phospho-calcified cellulose nanowhiskers. Int J Biol Macromol 182:168–178

    Article  CAS  PubMed  Google Scholar 

  • Ghorbani F, Zamanian A, Shams A, Shamoosi A, Aidun A (2019) Fabrication and characterisation of super-paramagnetic responsive PLGA–gelatine–magnetite scaffolds with the unidirectional porous structure: a physicochemical, mechanical, and in vitro evaluation. IET Nanobiotechnol 13(8):860–867

    Article  PubMed  PubMed Central  Google Scholar 

  • Hashemi SF, Mehrabi M, Ehterami A, Gharravi AM, Bitaraf FS, Salehi M (2021) In-vitro and in-vivo studies of PLA/PCL/gelatin composite scaffold containing ascorbic acid for bone regeneration. J Drug Deliv Sci Technol 61:102077

    Article  CAS  Google Scholar 

  • Hernandez-Martinez AR, Molina GA, Esparza R, Luis Rodriguez A, Cruz-Soto M, Rodríguez-de León E, Rangel D, Estévez M (2018) Novel biocompatible and biodegradable PCL-PLA/Iron oxide NPs marker clip composite for breast cancer biopsy. Polymers 10(12):1307

    Article  PubMed Central  CAS  Google Scholar 

  • Jafari H, Shahrousvand M, Kaffashi B (2018) Reinforced poly (ε-caprolactone) bimodal foams via phospho-calcified cellulose nanowhisker for osteogenic differentiation of human mesenchymal stem cells. ACS Biomater Sci Eng 4(7):2484–2493

    Article  CAS  PubMed  Google Scholar 

  • Jafari H, Shahrousvand M, Kaffashi B (2020) Preparation and characterization of reinforced poly (ε-caprolactone) nanocomposites by cellulose nanowhiskers. Polym Compos 41(2):624–632

    Article  CAS  Google Scholar 

  • Jafari H, Delporte C, Bernaerts K, De Leener G, Luhmer M, Nei L, Shavandi A (2021) Development of marine oligosaccharides for potential wound healing biomaterials engineering. Chem Eng J Adv 7:100113

    Article  Google Scholar 

  • Jeong H, Rho J, Shin J-Y, Lee DY, Hwang T, Kim KJ (2018) Mechanical properties and cytotoxicity of PLA/PCL films. Biomed Eng Lett 8(3):267–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Koons GL, Diba M, Mikos AG (2020) Materials design for bone-tissue engineering. Nat Rev Mater 5(8):584–603

    Article  CAS  Google Scholar 

  • Lu H, Kazarian SG (2020) How does high-pressure CO2 affect the morphology of PCL/PLA blends? Visualization of phase separation using in situ ATR-FTIR spectroscopic imaging. Spectrochim Acta Part A Mol Biomol Spectrosc 243:118760

    Article  CAS  Google Scholar 

  • Luciani A, Coccoli V, Orsi S, Ambrosio L, Netti PA (2008) PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials 29(36):4800–4807

    Article  CAS  PubMed  Google Scholar 

  • Lv Z, Zhao N, Wu Z, Zhu C, Li Q (2018) Fabrication of novel open-cell foams of poly (ε-caprolactone)/poly (lactic acid) blends for tissue-engineering scaffolds. Ind Eng Chem Res 57(39):12951–12958

    Article  CAS  Google Scholar 

  • Mao AS, Shin J-W, Mooney DJ (2016) Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials 98:184–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marei NH, El-Sherbiny IM, Lotfy A, El-Badawy A, El-Badri N (2016) Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Int J Biol Macromol 93:9–19

    Article  CAS  PubMed  Google Scholar 

  • Mathieu L, Bourban P-E, Månson J-A (2006) Processing of homogeneous ceramic/polymer blends for bioresorbable composites. Compos Sci Technol 66(11–12):1606–1614

    Article  CAS  Google Scholar 

  • Meskinfam M, Bertoldi S, Albanese N, Cerri A, Tanzi MC, Imani R, Baheiraei N, Farokhi M, Fare S (2018) Polyurethane foam/nano hydroxyapatite composite as a suitable scaffold for bone tissue regeneration. Mater Sci Eng C 82:130–140

    Article  CAS  Google Scholar 

  • Naghieh S, Ravari MK, Badrossamay M, Foroozmehr E, Kadkhodaei M (2016) Numerical investigation of the mechanical properties of the additive manufactured bone scaffolds fabricated by FDM: the effect of layer penetration and post-heating. J Mech Behav Biomed Mater 59:241–250

    Article  CAS  PubMed  Google Scholar 

  • Nahanmoghadam A, Asemani M, Goodarzi V, Ebrahimi-Barough S (2021) Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. J Biomed Mater Res Part A 109(6):981–993

    Article  CAS  Google Scholar 

  • Nail LN, Zhang D, Reinhard JL, Grunlan MA (2015) Fabrication of a bioactive, PCL-based" self-fitting" shape memory polymer scaffold. J Vis Exp JoVE. No 104

  • Nie L, Deng Y, Li P, Hou R, Shavandi A, Yang S (2020) Hydroxyethyl chitosan-reinforced polyvinyl alcohol/biphasic calcium phosphate hydrogels for bone regeneration. ACS Omega 5(19):10948–10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park JH, Lee BK, Park SH, Kim MG, Lee JW, Lee HY, Lee HB, Kim JH, Kim MS (2017) Preparation of biodegradable and elastic poly (ε-caprolactone-co-lactide) copolymers and evaluation as a localized and sustained drug delivery carrier. Int J Mol Sci 18(3):671

    Article  PubMed Central  CAS  Google Scholar 

  • Patrício T, Domingos M, Gloria A, D’Amora U, Coelho J, Bártolo P (2014) Fabrication and characterisation of PCL and PCL/PLA scaffolds for tissue engineering. Rapid Prototyp J 20:145–156

    Article  Google Scholar 

  • Qu H, Fu H, Han Z, Sun Y (2019) Biomaterials for bone tissue engineering scaffolds: a review. RSC Adv 9(45):26252–26262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao RU, Venkatanarayana B, Suman K (2019) Enhancement of mechanical properties of PLA/PCL (80/20) blend by reinforcing with MMT nanoclay. Mater Today Proc 18:85–97

    Article  CAS  Google Scholar 

  • Sankaran KK, Krishnan UM, Sethuraman S (2014) Axially aligned 3D nanofibrous grafts of PLA–PCL for small diameter cardiovascular applications. J Biomater Sci Polym Ed 25(16):1791–1812

    Article  CAS  PubMed  Google Scholar 

  • Shahbazarab Z, Teimouri A, Chermahini AN, Azadi M (2018) Fabrication and characterization of nanobiocomposite scaffold of zein/chitosan/nanohydroxyapatite prepared by freeze-drying method for bone tissue engineering. Int J Biol Macromol 108:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B (2018) In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomed Nanotechnol Biol Med 14(7):2061–2073

    Article  CAS  Google Scholar 

  • Shahrousvand M, Tabar FA, Shahrousvand E, Babaei A, Hasani-Sadrabadi MM, Sadeghi GMM, Jafari H, Salimi A (2017) High aspect ratio phospho-calcified rock candy-like cellulose nanowhiskers of wastepaper applicable in osteogenic differentiation of hMSCs. Carbohyd Polym 175:293–302

    Article  CAS  Google Scholar 

  • Shamsi M, Karimi M, Ghollasi M, Nezafati N, Shahrousvand M, Kamali M, Salimi A (2017) In vitro proliferation and differentiation of human bone marrow mesenchymal stem cells into osteoblasts on nanocomposite scaffolds based on bioactive glass (64SiO2-31CaO-5P2O5)-poly-l-lactic acid nanofibers fabricated by electrospinning method. Mater Sci Eng C 78:114–123

    Article  CAS  Google Scholar 

  • Shavandi A, Bekhit AE-DA, Ali MA, Sun Z (2015) Bio-mimetic composite scaffold from mussel shells, squid pen and crab chitosan for bone tissue engineering. Int J Biol Macromol 80:445–454

    Article  CAS  PubMed  Google Scholar 

  • Shavandi A, Bekhit AE-DA, Sun Z, Ali MA (2016) Bio-scaffolds produced from irradiated squid pen and crab chitosan with hydroxyapatite/β-tricalcium phosphate for bone-tissue engineering. Int J Biol Macromol 93:1446–1456

    Article  CAS  PubMed  Google Scholar 

  • Shin M, Abukawa H, Troulis MJ, Vacanti JP (2008) Development of a biodegradable scaffold with interconnected pores by heat fusion and its application to bone tissue engineering. J Biomed Mater Res Part A 84(3):702–709

    Article  CAS  Google Scholar 

  • Sun M, Downes S (2009) Physicochemical characterisation of novel ultra-thin biodegradable scaffolds for peripheral nerve repair. J Mater Sci Mater Med 20(5):1181

    Article  CAS  PubMed  Google Scholar 

  • Sung H-J, Meredith C, Johnson C, Galis ZS (2004) The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26):5735–5742

    Article  CAS  PubMed  Google Scholar 

  • Torres E, Dominguez-Candela I, Castello-Palacios S, Vallés-Lluch A, Fombuena V (2020) Development and characterization of polyester and acrylate-based composites with hydroxyapatite and halloysite nanotubes for medical applications. Polymers 12(8):1703

    Article  CAS  PubMed Central  Google Scholar 

  • Vieira A, Vieira J, Ferra J, Magalhães F, Guedes R, Marques A (2011) Mechanical study of PLA–PCL fibers during in vitro degradation. J Mech Behav Biomed Mater 4(3):451–460

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Sun J, Ding J (2011) Critical areas of cell adhesion on micropatterned surfaces. Biomaterials 32(16):3931–3938

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W (2002) Fabrication and surface modification of macroporous poly (L-lactic acid) and poly (L-lactic-co-glycolic acid)(70/30) cell scaffolds for human skin fibroblast cell culture. J Biomed Mater Res 62(3):438–446

    Article  CAS  PubMed  Google Scholar 

  • Yao Q, Cosme JG, Xu T, Miszuk JM, Picciani PH, Fong H, Sun H (2017) Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials 115:115–127

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zhou L, Zhang W (2014) Control of scaffold degradation in tissue engineering: a review. Tissue Eng Part B Rev 20(5):492–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HJ and AS acknowledge funding from Innoviris Brussels, Belgium (https://innoviris.brussels), under the project 2019—BRIDGE—4: RE4BRU. The content is solely the responsibility of the authors and does not necessarily represent the official views of the above-mentioned funding agency. The authors thank Mr. Mehdi Shahrousvand for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gity Mir Mohamad Sadeghi or Amin Shavandi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, F., Jafari, H., Ghaffari-bohlouli, P. et al. Proliferation and osteogenic differentiation of mesenchymal stem cells on three-dimensional scaffolds made by thermal sintering method. Chem. Pap. 75, 5971–5981 (2021). https://doi.org/10.1007/s11696-021-01774-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-021-01774-w

Keywords

Navigation