Skip to main content
Log in

A switchable and signal-amplified aptasensor based on metal organic frameworks as the quencher for turn-on detection of T-2 mycotoxin

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A simple and low-cost fluorescence aptasensor was developed for rapid and sensitive signal amplification detection of T-2 mycotoxin (T-2). Dual-terminal-fluorescein amidite (FAM)–labeled aptamer (D-aptamer) acted as a recognition element and signal indicator. The metal organic frameworks (MOFs) of N, N′-bis(2-hydroxyethyl)dithiooxamidato copper (II) (H2dtoaCu) were as the quencher. The D-aptamer was initially adsorbed to the surface of H2dtoaCu, leading to efficient quenching of the aptasensor. Upon addition of T-2, the D-aptamer underwent a conformation change to form the T-2/T-2 aptamer complex, which induced the signaling probe to be released from the H2dtoaCu surface. Thus, the fluorescence intensity (FL) of the D-aptamer was recovered. Versus the single-terminal-FAM-labeled aptamer (S-aptamer), the D-aptamer showed a lower detection limit of 0.39 ng/mL. The aptasensor was also successfully applied to detect T-2 in corn and wheat samples with good recoveries.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li Y, Wang Z, Beier RC, Shen J, De Smet D, De Saeger S, et al. T-2 toxin, a trichothecene mycotoxin: review of toxicity, metabolism, and analytical methods. J Agric Food Chem. 2011;59:3441–53. https://doi.org/10.1021/jf200767q.

    Article  CAS  PubMed  Google Scholar 

  2. Madheswaran R, Balachandran C, Murali MB. Influence of dietary culture material containing aflatoxin and T (2) toxin on certain serum biochemical constituents in Japanese quail. Mycopathologia. 2014;158:337–41. https://doi.org/10.1007/s11046-005-8399-8.

    Article  Google Scholar 

  3. Cho HD, Suh JH, Feng S, Eom T, Kim J, Hyun SM, et al. Comprehensive analysis of multi-class mycotoxins in twenty different species of functional and medicinal herbs using liquid chromatography–tandem mass spectrometry. Food Control. 2019;96:517–26. https://doi.org/10.1016/j.foodcont.2018.10.007.

    Article  CAS  Google Scholar 

  4. Nualkaw K, Poapolathep S, Zhang Z, Zhang Q, Giorgi M, Li P, et al. Simultaneous determination of multiple mycotoxins in swine, poultry and dairy feeds using ultra high performance liquid chromatography-tandem mass spectrometry. Toxins. 2020;12:253–70. https://doi.org/10.3390/toxins12040253.

    Article  CAS  PubMed Central  Google Scholar 

  5. Juan C, Oueslati S, Mañes J, Berrada H. Multimycotoxin determination in Tunisian farm animal feed. J Food Sci. 2019;84:3885–93. https://doi.org/10.1111/1750-3841.14948.

    Article  CAS  PubMed  Google Scholar 

  6. Mahmoudi T, Miguel de la G, Behnaz S, Ahad M, Behzad B. Recent advancements in structural improvements of lateral flow assays towards point-of-care testing. Trends Anal Chem 2019;116:13–30. https://doi.org/10.1016/j.trac.2019.04.016.

  7. Walter H, Bauer J, Steinmeyer J, Kuzuya A, Niemeyer CM, Wagenknecht HA. “DNA origami traffic lights” with a split aptamer sensor for a bicolor fluorescence readout. Nano Lett. 2017;17:2467–72. https://doi.org/10.1021/acs.nanolett.7b00159.

    Article  CAS  PubMed  Google Scholar 

  8. Lv S, Tang Y, Zhang K, Tang D. Wet NH3-triggered NH2-MIL-125(Ti) structural switch for visible fluorescence immunoassay impregnated on paper. Anal Chem. 2018;90(24):14121–5. https://doi.org/10.1021/acs.analchem.8b04981.

    Article  CAS  PubMed  Google Scholar 

  9. Qiu Z, Shu J, Tang D. Bioresponsive release system for visual fluorescence detection of carcinoembryonic antigen from mesoporous silica nanocontainers mediated optical color on quantum dot-enzyme-impregnated paper. Anal Chem. 2017;89(9):5152–60. https://doi.org/10.1021/acs.analchem.7b00989.

    Article  CAS  PubMed  Google Scholar 

  10. Tan X, Wang X, Hao A, Liu Y, Wang X, Chu T, et al. Aptamer-based ratiometric fluorescent nanoprobe for specific and visual detection of zearalenone. Microchem J. 2020;157:104943. https://doi.org/10.1016/j.microc.2020.104943.

    Article  CAS  Google Scholar 

  11. Pla L, Martinez-Bisbal MC, Aznar E, Sancenon F, Martinez-Manez R, Santiago-Felipe S. A fluorogenic capped mesoporous aptasensor for gluten detection. Anal Chim Acta. 2021;1147:178–86. https://doi.org/10.1016/j.aca.2020.12.060.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou Q, Tang D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trends Anal Chem. 2020;124:115814. https://doi.org/10.1016/j.trac.2020.115814.

    Article  CAS  Google Scholar 

  13. Lin Y, Zhou Q, Tang D, Niessner R, Knopp D. Signal-on photoelectrochemical immunoassay for aflatoxin B1 based on enzymatic product-etching MnO2 nanosheets for dissociation of carbon dots. Anal Chem. 2017;89(10):5637–45. https://doi.org/10.1021/acs.analchem.7b00942.

    Article  CAS  PubMed  Google Scholar 

  14. Lin Y, Zhou Q, Tang D. Dopamine-loaded liposomes for in-situ amplified photoelectrochemical immunoassay of AFB1 to enhance photocurrent of Mn2+-doped Zn3(OH)2V2O7 nanobelts. Anal Chem. 2017;89(21):11803–10. https://doi.org/10.1021/acs.analchem.7b03451.

    Article  CAS  PubMed  Google Scholar 

  15. Sun YF, Li S, Chen RP, Wu P, Liang J. Ultrasensitive and rapid detection of T-2 toxin using a target-responsive DNA hydrogel. Sensors Actuators B Chem. 2020;311:27912–127919. https://doi.org/10.1016/j.snb.2020.127912.

    Article  CAS  Google Scholar 

  16. Wang B, Wu YY, Chen YF, Weng B, Xu LQ, Li CM. A highly sensitive aptasensor for OTA detection based on hybridization chain reaction and fluorescent perylene probe. Biosens Bioelectron. 2016;81:125–30. https://doi.org/10.1016/j.bios.2016.02.062.

    Article  CAS  PubMed  Google Scholar 

  17. Ji Z, Wang HZ, Canossa S, Wuttke S, Yaghi OM. Pore chemistry of metal–organic frameworks. Adv Funct Mater. 2020;30:2000238–61. https://doi.org/10.1002/adfm.202000238.

    Article  CAS  Google Scholar 

  18. Mayer DC, Zarȩba JK, Gabriele RS, Alexander P, Marta C, Robert Z, et al. Postsynthetic framework contraction enhances the two-photon absorption properties of pillar-layered metal–organic frameworks. Chem Mater. 2020;32:5682–90. https://doi.org/10.1021/acs.chemmater.0c01417.

    Article  CAS  Google Scholar 

  19. Dai SL, Wu SJ, Duan N, Chen J, Zheng ZG, Wang ZP. An ultrasensitive aptasensor for ochratoxin A using hexagonal core/shell upconversion nanoparticles as luminophores. Biosens Bioelectron. 2017;91:538–44. https://doi.org/10.1016/j.bios.2017.01.009.

    Article  CAS  PubMed  Google Scholar 

  20. Gao ZH, Xu BY, Zhang TJ, Liu Z, Zhang WG, Sun X, et al. Spatially responsive multicolor lanthanide-MOFs heterostructures for covert photonic barcodes. Angew Chem Int Ed. 2020;59:1–6. https://doi.org/10.1002/anie.202009295.

    Article  CAS  Google Scholar 

  21. Khan IM, Zhao S, Niazi S, Mohsin A, Shoaib M, Duan N, et al. Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin. Sens. Actuators, B. 2018;277:328–335.

  22. Khan IM, Niazi S, Yu Y, Mohsin A, Mushtaq BS, Iqbal MW, et al. Aptamer induced multi-colored AuNCs-WS2 “turn on” FRET nano platform for dual-color simultaneous detection of aflatoxin B1 and zearalenone. Anal Chem. 2019;91:14085–92. https://doi.org/10.1021/acs.analchem.9b03880.

    Article  CAS  PubMed  Google Scholar 

  23. Khan R, Sherazi TA, Catanante G, Rasheed S, Marty JL, et al. Switchable fluorescence sensor toward PAT via CA-MWCNTs quenched aptamer-tagged carboxyfluorescein. Food Chem. 2020;312:126048–55. https://doi.org/10.1016/j.foodchem.2019.126048.

    Article  CAS  PubMed  Google Scholar 

  24. Li YP, Sun LL, Zhao Q. Development of aptamer fluorescent switch assay for aflatoxin B1 by using fluorescein-labeled aptamer and black hole quencher1-labeled complementary DNA. Anal Bioanal Chem. 2018;410:6269–77. https://doi.org/10.1007/s00216-018-1237-x.

    Article  CAS  PubMed  Google Scholar 

  25. Hai XM, Li N, Wang K, Zhang ZQ, Zhang J, Dang FQ. A fluorescence aptasensor based on two-dimensional sheet metal-organic frameworks for monitoring adenosine triphosphate. Anal Chim Acta. 2018;998:60–6. https://doi.org/10.1016/j.aca.2017.10.028.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao XD, Wang Y, Li JZ, Huo BY, Huang H, Bai JL, et al. A fluorescence aptasensor for the sensitive detection of T-2 toxin based on FRET by adjusting the surface electric potentials of UCNPs and MIL-101. Anal Chim Acta. 2021;1160:338450–9. https://doi.org/10.1016/j.aca.2021.338450.

    Article  CAS  PubMed  Google Scholar 

  27. Zhao XD, Wang Y, Li JZ, Huo BY, Qin YK, Zhang JY, et al. A fluorescence aptasensor based on controlled zirconium–based MOFs for the highly sensitive detection of T–2 toxin. Spectrochim Acta Part A. 2021;259:119893–902. https://doi.org/10.1016/j.saa.2021.119893.

    Article  CAS  Google Scholar 

  28. Wen XY, Huang QW, Nie DX, Zhao XY, Cao HJ, Wu WH, et al. A multifunctional N-doped Cu–MOFs (N–Cu–MOF) nanomaterial-driven electrochemical aptasensor for sensitive detection of deoxynivalenol. Molecules. 2021;26(8):2243–53. https://doi.org/10.3390/molecules26082243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chen XJ, Huang YK, Duan N, Wu SJ, Xia Y, Ma XY, et al. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide. J Agric Food Chem. 2014;62:10368–74. https://doi.org/10.1021/jf5032058.

    Article  CAS  PubMed  Google Scholar 

  30. Zhang M, Wang Y, Yuan S, Sun X, Huo BY, Bai JL, et al. Competitive fluorometric assay for the food toxin T-2 by using DNA-modified silver nanoclusters, aptamer-modified magnetic beads, and exponential isothermal amplification. Microchim Acta. 2019;186:219–25. https://doi.org/10.1007/s00604-019-3322-z.

    Article  Google Scholar 

  31. De Silva AP, Gunaratne HQ, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, et al. Signaling recognition events with fluorescent sensors and switches. Chem Rev. 1997;97:1515–66. https://doi.org/10.1021/cr960386p.

    Article  PubMed  Google Scholar 

  32. Li X, Zheng L, Huang L, Zheng O, Lin Z, Guo L, et al. Adsorption removal of crystal violet from aqueous solution using a metal-organic frameworks material, copper coordination polymer with dithiooxamide. J Appl Polym Sci. 2013;129:2857–64. https://doi.org/10.1002/app.39009.

    Article  CAS  Google Scholar 

  33. He DY, Wu ZZ, Cui B, Xu EB, Jin ZY. Building a fluorescent aptasensor based on exonuclease-assisted target recycling strategy for one-step detection of T-2 toxin. Food Anal Methods. 2019;12:625–32. https://doi.org/10.1007/s12161-018-1392-x.

    Article  Google Scholar 

  34. Zhu QY, Li TT, Ma Y, Wang ZH, Huang JX, Liu RN, et al. Colorimetric detection of cholic acid based on an aptamer adsorbed gold nanoprobe. RSC Adv. 2017;7:19250–6. https://doi.org/10.1039/c7ra00255f.

    Article  CAS  Google Scholar 

  35. Bernhardt K, Valenta H, Kersten S, Humpf HU, Dänicke S. Determination of T-2 toxin, HT-2 toxin, and three other type A trichothecenes in layer feed by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)-comparison of two sample preparation methods. Mycotoxin Res. 2016;32:89–97. https://doi.org/10.1007/s12550-016-0244-z.

    Article  CAS  PubMed  Google Scholar 

  36. Li YS, Chen AQ, Mao X, Sun MX, Yang SP, Li J, et al. Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2021;337:127802–7. https://doi.org/10.1016/j.foodchem.2020.127802.

    Article  CAS  PubMed  Google Scholar 

  37. Deng Q, Qiu M, Wang YL, Lv PL, Wu CJ, Sun LJ, et al. A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues. Ecotoxicol Environ Saf. 2017;142:441–7. https://doi.org/10.1016/j.ecoenv.2017.04.037.

    Article  CAS  PubMed  Google Scholar 

  38. Zhong HT, Yu C, Gao RF, Chen J, Yu YJ, Geng HQ, et al. A novel sandwich aptasensor for detecting T-2 toxin based on rGO-TEPA-Au@Pt nanorods with a dual signal amplification strategy. Biosens Bioelectron. 2019;144:111635–42. https://doi.org/10.1016/j.bios.2019.111635.

    Article  CAS  PubMed  Google Scholar 

  39. Guo T, Wang C, Zhou H, Zhang Y, Ma L, Wang S. A facile aptasensor based on polydopamine nanospheres for high-sensitivity sensing of T-2 toxin. Anal Methods. 2021;13(24):2654–8. https://doi.org/10.1039/d1ay00642h.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Technologies Research and Development Program of China (2018YFC1604100), National Natural Science Foundation of China (21904064, 21878154), and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJB150028).

Author information

Authors and Affiliations

Authors

Contributions

Xinliu Tan: methodology, investigation, roles/writing—original draft

Weidao Yu: investigation

Yuwen Wang: funding acquisition

Ping Song: supervision

Qing Xu: funding acquisition

Dengming Ming: conceptualization

Yaqiong Yang: visualization, writing—review and editing, funding acquisition

Corresponding author

Correspondence to Yaqiong Yang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary data associated with this article can be found in the online version at xxx.

ESM 1

(DOCX 719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, X., Yu, W., Wang, Y. et al. A switchable and signal-amplified aptasensor based on metal organic frameworks as the quencher for turn-on detection of T-2 mycotoxin. Anal Bioanal Chem 413, 6595–6603 (2021). https://doi.org/10.1007/s00216-021-03625-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03625-9

Keywords

Navigation