Skip to main content
Log in

One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Deoxynivalenol (DON) and zearalenone (ZEN) are mycotoxins that contaminate a wide range of grains and crops. In this study, a one-step time-resolved single-channel immunochromatographic test strip based on europium ion polystyrene fluorescence microspheres was first developed for sensitive and quantitative detection of DON and ZEN. The concentration of the artificial antigen and the mass ratio of the monoclonal antibody to fluorescent microspheres for conjugation were optimized to simplify the sample addition process during immunochromatographic assay and improve the on-site detection efficiency. The limits of detection (LOD) of the single-channel immunochromatographic test strip for DON and ZEN detection were 0.17 and 0.54 μg/L, respectively. Meanwhile, the dual-channel immunochromatographic test strip was designed to simultaneously detect DON and ZEN, with LODs of 0.24 and 0.69 μg/L achieved for DON and ZEN, respectively. The developed test strips also yielded recovery results consistent with that obtained by LC-MS/MS for DON and ZEN detection in real samples of wheat and corn flour, confirming the practicability and reliability of the test strip. The developed immunochromatographic test strips realize quick and sensitive detection of DON and ZEN, exhibiting potential for broad applications in the point-of-care testing platform of multiple mycotoxins in agricultural products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marin S, Ramos A, Cano-Sancho G, Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol. 2013;60:218–37.

    Article  CAS  PubMed  Google Scholar 

  2. Wen J, Mu P, Deng Y. Mycotoxins: cytotoxicity and biotransformation in animal cells. Toxicol Res. 2016;5(2):377–87.

    Article  CAS  Google Scholar 

  3. Krska R, Baumgartner S, Josephs R. The state-of-the-art in the analysis of type-A and-B trichothecene mycotoxins in cereals. Fresenius J Anal Chem. 2001;371(3):285–99.

    Article  CAS  PubMed  Google Scholar 

  4. Neuhof T, Koch M, Rasenko T, Nehls I. Occurrence of zearalenone in wheat kernels infected with Fusarium culmorum. World Mycotoxin J. 2008;1(4):429–35.

    Article  CAS  Google Scholar 

  5. Union E. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union. 2006;49(L 364):5–24.

    Google Scholar 

  6. Wang D, Zhu J, Zhang Z, Zhang Q, Zhang W, Yu L, et al. Simultaneous lateral flow immunoassay for multi-class chemical contaminants in maize and peanut with one-stop sample preparation. Toxins. 2019;11(1):56.

    Article  CAS  PubMed Central  Google Scholar 

  7. Duan H, Li Y, Shao Y, Huang X, Xiong Y. Multicolor quantum dot nanobeads for simultaneous multiplex immunochromatographic detection of mycotoxins in maize. Sensors Actuators B Chem. 2019;291:411–7.

    Article  CAS  Google Scholar 

  8. Goryacheva OA, Guhrenz C, Schneider K, Beloglazova NV, Goryacheva IY, De Saeger S, et al. Silanized luminescent quantum dots for the simultaneous multicolor lateral flow immunoassay of two mycotoxins. ACS Appl Mater Interfaces. 2020;12(22):24575–84.

    Article  CAS  PubMed  Google Scholar 

  9. Hou S, Ma J, Cheng Y, Wang H, Sun J, Yan Y. One-step rapid detection of fumonisin B1, dexyonivalenol and zearalenone in grains. Food Control. 2020;117:107107.

    Article  CAS  Google Scholar 

  10. Bao Y, Liu B, Hua L, Wang Q, Zhao Y, Wang T. Determination of deoxynivalenol residues in cereal grains by solid phase extraction column clean-up coupled with high performance liquid chromatography. J Food Saf. 2019;10(6):1496–500.

    Google Scholar 

  11. Thongprapai P, Cheewasedtham W, Chong KF, Rujiralai T. Selective magnetic nanographene oxide solid-phase extraction with high-performance liquid chromatography and fluorescence detection for the determination of zearalenone in corn samples. J Food Saf. 2018;41(23):4348–54.

    CAS  Google Scholar 

  12. Li Y, Chen A, Mao X, Sun M, Yang S, Li J, et al. Multiple antibodied based immunoaffinity columns preparation for the simultaneous analysis of deoxynivalenol and T-2 toxin in cereals by liquid chromatography tandem mass spectrometry. Food Chem. 2021;337:127802.

    Article  CAS  PubMed  Google Scholar 

  13. Slobodchikova I, Vuckovic D. Liquid chromatography–high resolution mass spectrometry method for monitoring of 17 mycotoxins in human plasma for exposure studies. J Chromatogr A. 2018;1548:51–63.

    Article  CAS  PubMed  Google Scholar 

  14. He Q, Peng H, Yang J, Xu Z, Fan C, Sun Y. QuEChERS extraction followed by enzyme-linked immunosorbent assay for determination of deoxynivalenol and zearalenone in cereals. Food Agric Immunol. 2017;28(6):1477–95.

    Article  CAS  Google Scholar 

  15. Sanders M, McPartlin D, Moran K, Guo Y, Eeckhout M, O’Kennedy R, et al. Comparison of enzyme-linked immunosorbent assay, surface plasmon resonance and biolayer interferometry for screening of deoxynivalenol in wheat and wheat dust. Toxins. 2016;8(4):103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Yin M, Hu X, Sun Y, Xing Y, Xing G, Wang Y, et al. Broad-spectrum detection of zeranol and its analogues by a colloidal gold-based lateral flow immunochromatographic assay in milk. Food Chem. 2020;321:126697.

    Article  CAS  PubMed  Google Scholar 

  17. Gallardo C, Nieto R, Soler A, Pelayo V, Fernández-Pinero J, Markowska-Daniel I, et al. Assessment of African swine fever diagnostic techniques as a response to the epidemic outbreaks in Eastern European Union countries: how to improve surveillance and control programs. J Clin Microbiol. 2015;53(8):2555–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hu L-M, Luo K, Xia J, Xu G-M, Wu C-H, Han J-J, et al. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosens Bioelectron. 2017;91:95–103.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Yang J, Lu Y, Ma D-Y, Qi MG, Wang S. A competitive direct enzyme-linked immunosorbent assay for the rapid detection of deoxynivalenol: development and application in agricultural products and feedstuff. Food Agric Immunol. 2017;28(3):516–27.

    Article  CAS  Google Scholar 

  20. Pan M, Ma T, Yang J, Li S, Liu S, Wang S. Development of lateral flow immunochromatographic assays using colloidal Au sphere and nanorods as signal marker for the determination of zearalenone in cereals. Foods. 2020;9(3):281.

    Article  CAS  PubMed Central  Google Scholar 

  21. Sun Y, Xie J, Peng T, Wang J, Xie S, Yao K, et al. A new method based on time-resolved fluoroimmunoassay for the detection of streptomycin in milk. Food Anal Methods. 2017;10(7):2262–9.

    Article  Google Scholar 

  22. Elliott CT, Francis KS, McCaughey WJ. Investigation of dissociation enhanced lanthanide fluoroimmunoassay as an alternative screening test for veterinary drug residues. Analyst. 1994;119(12):2565–9.

    Article  CAS  PubMed  Google Scholar 

  23. Zhu F, Zhang H, Qiu M, Wu N, Zeng K, Du D. Dual-label time-resolved fluoroimmunoassay as an advantageous approach for investigation of diethyl phthalate & dibutyl phthalate in surface water. Sci Total Environ. 2019;695:133793.

    Article  CAS  PubMed  Google Scholar 

  24. Liu M, Zeng L-F, Yang Y-J, Hu L-M, Lai W-H. Fluorescent microsphere immunochromatographic assays for detecting bone alkaline phosphatase based on biolayer interferometry-selected antibody. RSC Adv. 2017;7(52):32952–9.

    Article  CAS  Google Scholar 

  25. Li K, Li X, Fan Y, Yang C, Lv X. Simultaneous detection of gastric cancer screening biomarkers plasma pepsinogen I/II using fluorescent immunochromatographic strip coupled with a miniature analytical device. Sensors Actuators B Chem. 2019;286:272–81.

    Article  CAS  Google Scholar 

  26. Ansari AA, Aldalbahi AK, Labis JP, Manthrammel MA. Impact of surface coating on physical properties of europium-doped gadolinium fluoride microspheres. J Fluor Chem. 2017;199:7–13.

    Article  CAS  Google Scholar 

  27. Lou D, Fan L, Cui Y, Zhu Y, Gu N, Zhang Y. Fluorescent nanoprobes with oriented modified antibodies to improve lateral flow immunoassay of cardiac troponin I. Anal Chem. 2018;90(11):6502–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kong W, Xiao C, Ying G, Liu X, Zhao X, Wang R, et al. Magnetic microspheres-based cytometric bead array assay for highly sensitive detection of ochratoxin A. Biosens Bioelectron. 2017;94:420–8.

    Article  CAS  PubMed  Google Scholar 

  29. Kan CW, Tobos CI, Rissin DM, Wiener AD, Meyer RE, Svancara DM, et al. Digital enzyme-linked immunosorbent assays with sub-attomolar detection limits based on low numbers of capture beads combined with high efficiency bead analysis. Lab Chip. 2020;20(12):2122–35.

    Article  CAS  PubMed  Google Scholar 

  30. Wang H, Guan J, Liu X, Shi Y, Wu Q, Luo M, et al. Rapid detection of avian leukosis virus using a fluorescent microsphere immunochromatographic test strip assay. Poult Sci. 2019;98(12):6492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Wen K, Wang Z, Jiang H, Beier RC, Shen J. An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M1 in milk. Food Control. 2016;60:588–95.

    Article  CAS  Google Scholar 

  32. Dong H, An X, Xiang Y, Guan F, Zhang Q, Yang Q, et al. Novel time-resolved fluorescence immunochromatography paper-based sensor with signal amplification strategy for detection of deoxynivalenol. Sensors. 2020;20(22):6577.

    Article  CAS  PubMed Central  Google Scholar 

  33. Wang X, Wu X, Lu Z, Tao X. Comparative study of time-resolved fluorescent nanobeads, quantum dot nanobeads and quantum dots as labels in fluorescence immunochromatography for detection of aflatoxin B1 in grains. Biomolecules. 2020;10(4):575.

    Article  CAS  PubMed Central  Google Scholar 

  34. Li C, He X, Yang Y, Gong W, Huang K, Zhang Y, et al. Rapid and visual detection of African swine fever virus antibody by using fluorescent immunochromatography test strip. Talanta. 2020;219:121284.

    Article  CAS  PubMed  Google Scholar 

  35. Kong D, Xie Z, Liu L, Song S, Kuang H, Xu C. Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food Agric Immunol. 2017;28(3):414–26.

    Article  CAS  Google Scholar 

  36. Kim KY, Shim WB, Kim JS, Chung DH. Development of a simultaneous lateral flow strip test for the rapid and simple detection of deoxynivalenol and zearalenone. J Food Sci. 2014;79(10):M2048–M55.

    Article  CAS  PubMed  Google Scholar 

  37. Ye J, Wu Y, Guo Q, Lu M, Wang S, Xin Y, et al. Development and interlaboratory study of a liquid chromatography tandem mass spectrometric method for the determination of multiple mycotoxins in cereals using stable isotope dilution. J AOAC Int. 2018;101(3):667–76.

    Article  CAS  PubMed  Google Scholar 

  38. Xu Y, Huang Z-B, He Q-H, Deng S-Z, Li L-S, Li Y-P. Development of an immunochromatographic strip test for the rapid detection of deoxynivalenol in wheat and maize. Food Chem. 2010;119(2):834–9.

    Article  CAS  Google Scholar 

  39. Li M, Sun M, Hong X, Duan J, Du D. Survey of deoxynivalenol contamination in agricultural products in the Chinese market using an ELISA kit. Toxins. 2019;11(1):6.

    Article  CAS  Google Scholar 

  40. Shi L, Yu T, Luo M, Wang H. Preparation monoclonal β-type anti-idiotype antibody of zearalenone and development of green ELISA quantitative detecting technique. Prep Biochem Biotechnol. 2020;50(4):419–24.

    Article  CAS  PubMed  Google Scholar 

  41. Han L, Li Y-T, Jiang J-Q, Li R-F, Fan G-Y, Lv J-M, et al. Development of a direct competitive ELISA kit for detecting deoxynivalenol contamination in wheat. Molecules. 2020;25(1):50.

    Article  CAS  Google Scholar 

  42. Sompunga P, Pruksametanan N, Rangnoi K, Choowongkomon K, Yamabhai M. Generation of human and rabbit recombinant antibodies for the detection of zearalenone by phage display antibody technology. Talanta. 2019;201:397–405.

    Article  CAS  PubMed  Google Scholar 

  43. Foubert A, Beloglazova NV, De Saeger S. Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection. Anal Chim Acta. 2017;955:48–57.

    Article  CAS  PubMed  Google Scholar 

  44. S-j L, Sheng W, Wen W, Gu Y, Wang J-p, Wang S. Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Microchim Acta. 2018;185(4):1–8.

    Google Scholar 

  45. Guo J-B, Wei T-L, He Q-H, Cheng J-S, Qiu X-Z, Liu W-P, et al. A magnetic-separation-based homogeneous immunosensor for the detection of deoxynivalenol coupled with a nano-affinity cleaning up for LC-MS/MS confirmation. Food Agric Immunol. 2021;32(1):204–20.

    Article  CAS  Google Scholar 

  46. Chen Y, Fu Q, Xie J, Wang H, Tang Y. Development of a high sensitivity quantum dot-based fluorescent quenching lateral flow assay for the detection of zearalenone. Anal Bioanal Chem. 2019;411(10):2169–75.

    Article  CAS  PubMed  Google Scholar 

  47. Lee H-M, Song S-O, Cha S-H, Wee S-B, Bischoff K, Park S-W, et al. Development of a monoclonal antibody against deoxynivalenol for magnetic nanoparticle-based extraction and an enzyme-linked immunosorbent assay. J Vet Sci. 2013;14(2):143–50.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang X, Wang X, Sun M, Zhang X, Song H, Yan Y, et al. A magnetic nanoparticle based enzyme-linked immunosorbent assay for sensitive quantification of zearalenone in cereal and feed samples. Toxins. 2015;7(10):4216–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tang J, Wu L, Lin J, Zhang E, Luo Y. Development of quantum dot‐based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin‐6. J Clin Lab Anal. 2021;35(5):e23752. 

Download references

Funding

This research was supported by the National Key Research and Development Program of China (2018YFC1604206), the National Natural Science Foundation of China (No. 31772069), the Natural Science Foundation of Jiangsu Province (No. BK20190584), the fellowship China Postdoctoral Science Foundation (2020M671343), the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2020-IFST-03), the Collaborative Innovation Center of Food Safety and Quality Control, and the national first-class discipline program of Food Science and Technology (JUFSTR20180303).

Author information

Authors and Affiliations

Authors

Contributions

Jiadi Sun: investigation, experiment, writing, and review and editing. Liangzhe Wang: data processing and analysis. Diaodiao Yang: data processing. Xuran Fu: data processing, writing. Jingdong Shao: review and editing. Xiulan Sun: visualization, review and editing, supervision.

Corresponding author

Correspondence to Xiulan Sun.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Wang, L., Shao, J. et al. One-step time-resolved fluorescence microsphere immunochromatographic test strip for quantitative and simultaneous detection of DON and ZEN. Anal Bioanal Chem 413, 6489–6502 (2021). https://doi.org/10.1007/s00216-021-03612-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-021-03612-0

Keywords

Navigation