Skip to main content
Log in

Synchronously Improving the Thermal Conductivity and Mechanical Properties of Al–Si–Fe–Mg–Cu–Zn Alloy Die Castings Through Ultrasonic-Assisted Rheoforming

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

An ultrasonic vibration-assisted air-cooled stirring rod process (ACSR + UV) was used to efficiently prepare a large-volume semisolid slurry with a mass of more than 40 kg. A low-cost Al–Si–Fe–Mg–Cu–Zn die-casted alloy with high thermal conductivity, high plasticity and medium strength was developed. The alloy was used to manufacture large, thin-walled parts for 5G base stations by using the ACSR + UV rheological die-casting (ACSR + UV R-DC) process. Investigations were performed on the microstructure, porosity, mechanical properties, fracture behaviour and thermal conductivity of the ACSR + UV R-DC alloy, which was then compared to traditionally die-casted (T-DC) and ACSR R-DC alloys. The mechanisms for the microstructural refinement and enhancement of the mechanical and thermal conductivity performances of the ACSR + UV R-DC alloy were also analysed. The results showed that the ACSR + UV process increased the nucleation rate of the melt due to the increase in the nucleation area and the generation of cavitation bubbles. A radial- and an axial-forced convection was also generated inside the melt under the combined effects of acoustic flow and mechanical stirring, thereby homogenising the melt composition field and the temperature field. Therefore, the ACSR + UV R-DC process not only refined the primary α-Al (α1-Al), the eutectic silicon and the secondary α-Al (α2-Al), but also greatly improved the morphology and the distribution of the β-Al5FeSi phase. The mechanical properties of the ACSR + UV R-DC alloy were higher than those of the T-DC and the ACSR R-DC alloys. Compared to the T-DC alloy, the ultimate tensile strength, elongation and yield strength of the ACSR + UV R-DC alloy were increased by 34%, 122% and 19%, respectively. This was because the ACSR + UV R-DC technique gave the alloy the characteristics of high density, fine spherical α1-Al grain and a fine and uniform β-phase, which improved the fracture behaviour of the alloy. The thermal conductivity of the ACSR + UV R-DC alloy was 184 W/(m K), which was 10.2% and 3.4% higher than that of T-DC and ACSR R-DC alloys, respectively. This was because the refined eutectic silicon and β phases in the ACSR + UV R-DC alloy facilitated an easier electron flow through the eutectic region, and the decrease in porosity increased the effective area of heat conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Zhang, Y. Du, S.H. Liu, Y.L. Liu, B. Sundman, Thermochim. Acta 635, 8 (2016)

    Article  CAS  Google Scholar 

  2. M.F. Qi, Y.L. Kang, Q.Q. Qiu, W.C. Tang, J.Y. Li, B.S. Li, J. Alloys Compd. 749, 487 (2018)

    Article  CAS  Google Scholar 

  3. M.W. Wu, L. Hua, J.X. Zhou, Y.J. Yin, Mater. Rev. 32, 1486 (2018)

    Google Scholar 

  4. X.X. Dong, X.Z. Zhu, S.X. Ji, J. Mater. Process. Technol. 266, 105 (2019)

    Article  CAS  Google Scholar 

  5. Z.Q. Hu, X.J. Zhang, S.S. Wu, Acta Metall. Sin. -Engl. Lett. 28, 1344 (2015)

    Article  CAS  Google Scholar 

  6. H.D. Zhao, Y.F. Bai, X.X. Ouyang, P.Y. Dong, Trans. Nonferrous Met. Soc. China 20, 2064 (2010)

    Article  CAS  Google Scholar 

  7. P. Das, B. Bhuniya, S.K. Samanta, P. Dutta, J. Mater. Process. Technol. 271, 293 (2019)

    Article  CAS  Google Scholar 

  8. X.J. Yang, J. Liu, Acta Metall. Sin. -Engl. Lett. 15, 511 (2002)

    CAS  Google Scholar 

  9. C. Xu, J.W. Zhao, A. Guo, H. Li, G.Z. Dai, X. Zhang, J. Mater. Process. Technol. 249, 167 (2017)

    Article  CAS  Google Scholar 

  10. M.F. Qi, Y.L. Kang, B. Zhou, W.N. Liao, G.M. Zhu, Y.D. Li, W.R. Li, J. Mater. Process. Technol. 234, 353 (2016)

    Article  CAS  Google Scholar 

  11. M.F. Qi, Y.L. Kang, B. Zhou, G.M. Zhu, H.H. Zhang, Acta Metall. Sin. (in Chinese) 51, 668 (2015)

    CAS  Google Scholar 

  12. M.F. Qi, Y.L. Kang, W.C. Tang, Q.Q. Qiu, B.S. Li, Mater. Lett. 213, 378 (2018)

    Article  CAS  Google Scholar 

  13. A.E.W. Jarfors, J.C. Zheng, L. Chen, J. Yang, Solid State Phenom. 285, 405 (2018)

    Article  Google Scholar 

  14. J.S. Zheng, RSF semisolid forming technology and application. Paper presented at the 7th International Symposium on Controlled Solidification and Forming Engineering and Semisolid Technology and Application, Shenzhen, 22–23 October 2018

  15. Y. Zhang, L.D. Wang, P.P. Xu, Q.F. Wang, H.C. Cao, J.S. Zheng, Z.H. Luo, Spec. Cast. Nonferrous Alloys 36, 165 (2016)

    Google Scholar 

  16. M.F. Qi, Y.L. Kang, G.M. Zhu, Trans. Nonferrous Met. Soc. China 27, 1939 (2017)

    Article  CAS  Google Scholar 

  17. M.F. Qi, Y.L. Kang, J.Y. Li, B.Y. Shang, J. Mater. Process. Technol. 279, 116586 (2020)

    Article  CAS  Google Scholar 

  18. S.L. Lü, S.S. Wu, C. Lin, P. An, Acta Metall. Sin. -Engl. Lett. 27, 862 (2014)

    Article  CAS  Google Scholar 

  19. H. Yan, Y.S. Rao, R. He, J. Mater. Process. Technol. 214, 612 (2014)

    Article  CAS  Google Scholar 

  20. J.Y. Li, S.L. Lü, S.S. Wu, Q. Gao, Ultrason. Sonochem. 42, 814 (2018)

    Article  CAS  Google Scholar 

  21. P. Madhukar, N. Selvaraj, R. Gujjala, C.S.P. Rao, Ultrason. Sonochem. 58, 104665 (2019)

    Article  CAS  Google Scholar 

  22. X. Yang, S.S. Wu, S.L. Lü, L.Y. Hao, X.G. Fang, Ultrason. Sonochem. 40, 472 (2018)

    Article  CAS  Google Scholar 

  23. H. Kaya, A. Aker, J. Alloys Compd. 694, 145 (2017)

    Article  CAS  Google Scholar 

  24. Q. Tang, J.H. Zhao, T. Wang, J. Chen, K. He, J. Alloys Compd. 741, 161 (2018)

    Article  CAS  Google Scholar 

  25. T. Gao, Z.Q. Li, Y.X. Zhang, X.F. Liu, Acta Metall. Sin. -Engl. Lett. 31, 48 (2018)

    Article  CAS  Google Scholar 

  26. Y. Yang, K.L. Yu, Y.G. Li, D.G. Zhao, X.F. Liu, Mater. Des. 33, 220 (2012)

    Article  CAS  Google Scholar 

  27. X.C. Song, H. Yan, X.J. Zhang, J. Rare Earth 35, 412 (2017)

    Article  CAS  Google Scholar 

  28. A.M. Cardinale, D. Maccio, G. Luciano, E. Canepa, P. Traverso, J. Alloys Compd. 695, 2180 (2017)

    Article  CAS  Google Scholar 

  29. C. Lin, S.S. Wu, S.L. Lü, P. An, L. Wan, Intermetallics 32, 176 (2013)

    Article  CAS  Google Scholar 

  30. C. Lin, S.S. Wu, S.L. Lü, P. An, L. Wan, J. Alloys Compd. 568, 42 (2013)

    Article  CAS  Google Scholar 

  31. Y.H. Zhang, Y.C. Liu, Y.J. Han, C. Wei, Z.M. Gao, J. Alloys Compd. 473, 442 (2009)

    Article  CAS  Google Scholar 

  32. ASTM International, ASTM E8–09 Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2009

  33. J.F. Jiang, Y. Wang, H.V. Atkinson, Mater. Charact. 90, 52 (2014)

    Article  CAS  Google Scholar 

  34. J.F. Jiang, Y. Wang, Mater. Sci. Eng. A 639, 350 (2015)

    Article  CAS  Google Scholar 

  35. J.S. Shin, S.H. Ko, K.T. Kim, J. Alloys Compd. 644, 673 (2015)

    Article  CAS  Google Scholar 

  36. R.N. Lumley, I.J. Polmear, H. Groot, J. Ferrier, Scr. Mater. 58, 1006 (2008)

    Article  CAS  Google Scholar 

  37. F.F. Chen, H.D. Zhao, G. Zhu, P.X. Fu, L.J. Xia, Exp. Therm. Fluid Sci. 68, 39 (2015)

    Article  CAS  Google Scholar 

  38. E. Vandersluis, A. Lombardi, C. Ravindran, A. Bois-Brochu, F. Chiesa, R. MacKay, Mater. Sci. Eng. A 648, 401 (2015)

    Article  CAS  Google Scholar 

  39. M.F. Qi, Y.L. Kang, J.Y. Li, Z. Wulabieke, Y.Z. Xu, Y.D. Li, A.S. Liu, J.C. Chen, J. Mater. Process. Technol. 285, 116800 (2020)

    Article  CAS  Google Scholar 

  40. W. Khalifa, Y. Tsunekawa, M. Okumiya, J. Mater. Process. Technol. 210, 2178 (2010)

    Article  CAS  Google Scholar 

  41. Z.Y. Liu, Dissertation, University of Science and Technology Beijing (2015)

  42. C.G. Kang, P.K. Seo, S.S. Kang, J. Mater. Process. Technol. 176, 32 (2006)

    Article  CAS  Google Scholar 

  43. K. Du, Dissertation, General Research Institute for Nonferrous Metals (2017)

  44. W.J. Hou, Dissertation, Hebei University of Science and Technology (2010)

  45. L.Q. Yang, Y.L. Kang, F. Zhang, J. Xu, Trans. Nonferrous Met. Soc. China 20, 862 (2010)

    Article  Google Scholar 

  46. A.K. Dahle, L. Arnberg, Acta Mater. 45, 547 (1997)

    Article  CAS  Google Scholar 

  47. Q.J. Wu, H. Yan, P.X. Zhang, X.Q. Zhu, Q. Nie, Acta Metall. Sin. -Engl. Lett. 31, 523 (2018)

    Article  CAS  Google Scholar 

  48. L.F. Mondolfo, Aluminum Alloys: Structure and Properties (Butter Worth Publication, Boston, 1976).

    Google Scholar 

  49. X.G. Fang, Dissertation, Huazhong University of Science & Technology (2017)

  50. C. Lin, Dissertation, Huazhong University of Science & Technology (2014)

  51. R. Trivedi, J. Cryst. Growth 48, 93 (1980)

    Article  CAS  Google Scholar 

  52. M. Sha, Dissertation, Huazhong University of Science & Technology (2014)

  53. Z.Y. Zhao, R.G. Guan, J.H. Zhang, Z.Y. Zhao, P.K. Bai, Acta Metall. Sin. -Engl. Lett. 30, 66 (2017)

    Article  CAS  Google Scholar 

  54. X.L. Cui, Dissertation, Shandong University (2016)

  55. J.K. Chen, H.Y. Hung, C.F. Wang, N.K. Tang, Int. J. Heat Mass Transf. 105, 189 (2017)

    Article  CAS  Google Scholar 

  56. Y. Han, Dissertation, North China Electric Power University (2017)

  57. X. Li, S.M. Xiong, Z. Guo, Mater. Sci. Eng. A 633, 35 (2015)

    Article  CAS  Google Scholar 

  58. B. Lin, W.W. Zhang, Z.H. Lou, D.T. Zhang, Y.Y. Li, Mater. Des. 59, 10 (2014)

    Article  CAS  Google Scholar 

  59. J. Kubásek, D. Dvorský, J. Veselý, P. Minárik, M. Zemková, D. Vojtěch, Acta Metall. Sin. -Engl. Lett. 32, 321 (2019)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52005034 and 52027805), the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-043A1), the Zhuhai Industry-University-Research Cooperation Project (No. ZH22017001200176PWC) and the China Postdoctoral Science Foundation Funded Project (No. 2019M650486).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyuan Li.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, M., Kang, Y., Li, J. et al. Synchronously Improving the Thermal Conductivity and Mechanical Properties of Al–Si–Fe–Mg–Cu–Zn Alloy Die Castings Through Ultrasonic-Assisted Rheoforming. Acta Metall. Sin. (Engl. Lett.) 34, 1331–1344 (2021). https://doi.org/10.1007/s40195-021-01231-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01231-3

Keywords

Navigation