Skip to main content
Log in

Properties of Hot Compressed 21R SiAlON Ceramics with a Samarium Oxide Additive

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The compaction of initial powders, the bending strength, and the microhardness of 21R sialon ceramics obtained by hot pressing have been studied experimentally. It is found that the Sm2O3 sintering additive substantially reduces the annealing temperature and enhances the properties of the ceramics. The samples of 21R sialon ceramics without additives, which are prepared by annealing at 1950°C, have a density of 3.01 g/cm3, a bending strength of 240 ± 15 MPa, and a Vickers microhardness of 16.2 ± 0.4 GPa; the samples of 21R sialon ceramics with 2.5 wt % Sm2O3, which are annealed at 1750°C, are characterized by a density of 3.39 g/cm3, a bending strength of 315 ± 16 MPa, and a Vickers microhardness of 21.9 ± 0.2 GPa. It is shown that Sm2O3 reacts with 21R sialon in the temperature range of 1600–1700°C to form the 27R sialon and SmAlO3 impurity phases. In the samples annealed at 1750°C, the 27R sialon and Sm–sialon (Sm3Si2.5Al3.5O12.5N1.5) impurity phases are detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. V. A. Izhevskiy, L. A. Genova, J. C. Bressiani, et al., J. Eur. Ceram. Soc. 20, 2275 (2000). https://doi.org/10.1016/S0955-2219(00)00039-X

    Article  CAS  Google Scholar 

  2. T. Yamada, T. Yamao, and S. Sakata, Key Eng. Mater. 352, 173 (2007). https://doi.org/10.4028/www.scientific.net/KEM.352.173

    Article  CAS  Google Scholar 

  3. J. Sun, S. Huang, H. Ding, et al., Ceram. Int. 46, 1621 (2020). https://doi.org/10.1016/j.ceramint.2019.09.134

    Article  CAS  Google Scholar 

  4. B. Bitterlich, S. Bitsch, and K. Friederich, J. Eur. Ceram. Soc. 28, 989 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.09.003

    Article  CAS  Google Scholar 

  5. A. Çelik, I. Lazoglu, A. Kara, et al., Wear 338, 11 (2015). https://doi.org/10.1016/j.wear.2015.05.009

    Article  CAS  Google Scholar 

  6. K. H. Jack, Met. Tech. 9, 297 (1982). https://doi.org/10.1179/030716982803285639

    Article  CAS  Google Scholar 

  7. A. Rosenflanz, Curr. Opin. Solid State Mater. Sci. 4, 453 (1999). https://doi.org/10.1016/S1359-0286(00)00004-8

    Article  Google Scholar 

  8. Q. Li, Z. Yang, J. Zhong, et al., J. Eur. Ceram. Soc. 39, 934 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.12.035

    Article  CAS  Google Scholar 

  9. Y. F. Kargin, A. S. Lysenkov, S. N. Ivicheva, et al., Inorg. Mater. 46, 799 (2010). https://doi.org/10.1134/S0020168510070204

    Article  CAS  Google Scholar 

  10. H. X. Li, W. Y. Sun, and D. S. Yan, J. Eur. Ceram. Soc. 15, 697 (1995). https://doi.org/10.1016/0955-2219(95)00038-V

    Article  CAS  Google Scholar 

  11. K. H. Jack, J. Mater. Sci. 11, 1135 (1976). https://doi.org/10.1007/BF02396649

    Article  CAS  Google Scholar 

  12. P. L. Wang, W. Y. Sun, and D. S. Yan, J. Eur. Ceram. Soc. 20, 23 (2000). https://doi.org/10.1016/S0955-2219(99)00090-4

    Article  Google Scholar 

  13. S. N. Ivicheva, A. S. Lysenkov, N. A. Ovsyannikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 525, 012084 (2019). https://doi.org/10.1088/1757-899X/525/1/012084

  14. S. N. Ivicheva, A. A. Klimashin, N. A. Ovsyannikov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 848, 012112 (2020). https://doi.org/10.1088/1757-899X/848/1/012112

  15. S. N. Ivicheva, N. A. Ovsyannikov, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65, 1820 (2020). https://doi.org/10.1134/S0036023620120050

    Article  CAS  Google Scholar 

  16. L. K. L. Falk, Z. J. Shen, and T. Ekström, J. Eur. Ceram. Soc. 17, 1099 (1997). https://doi.org/10.1016/S0955-2219(96)00218-X

    Article  CAS  Google Scholar 

  17. S. Bandyopadhyay, J. Eur. Ceram. Soc. 17, 929 (1997). https://doi.org/10.1016/S0955-2219(96)00120-3

    Article  CAS  Google Scholar 

  18. P. Calloch and I. W. Brown, K. MacKenzie, et al., Ceram. Int. 42, 2330 (2016). https://doi.org/10.1016/j.ceramint.2015.10.029

    Article  CAS  Google Scholar 

  19. Z. Huang and L. Wu, Phase Equilibria Diagrams of High-Temperature Non-Oxide Ceramics (Springer, Singapore, 2018). https://doi.org/10.1007/978-981-13-0463-7

  20. M. Biswas, S. Sarkar, and S. Bandyopadhyay, Ceram. Int. 44, 18703 (2018). https://doi.org/10.1016/j.ceramint.2018.07.099

    Article  CAS  Google Scholar 

  21. M. Biswas, S. Bandyopadhyay, and D. Bhattacharya, Mater. Chem. Phys. 243, 122617 (2020). https://doi.org/10.1016/j.matchemphys.2019.122617

    Article  CAS  Google Scholar 

  22. A. S. Lysenkov, M. O. Stolbova, D. D. Titov, et al., IOP Conf. Ser.: Mater. Sci. Eng. 848, 012052 (2020). https://doi.org/10.1088/1757-899X/848/1/012052

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (project no. 20-03-00455a). The experimental part (X-ray phase analysis, scanning electron microscopy, and Vickers microhardness and bending strength measurements) was performed within the framework of State assignment no. 075-00328-21-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lysenkov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFRMATION

This paper is published following the results of Sixth Interdisciplinary Scientific Forum with International Participants New Materials and Advanced Technologies, Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lysenkov, A.S., Titov, D.D., Kim, K.A. et al. Properties of Hot Compressed 21R SiAlON Ceramics with a Samarium Oxide Additive. Russ. J. Inorg. Chem. 66, 1196–1202 (2021). https://doi.org/10.1134/S0036023621080143

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080143

Keywords:

Navigation