Skip to main content
Log in

Synthesis, Structure, and Properties of the Ti3SiC2 MAX Phases Obtained by Hot Pressing

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Ti3SiC2 was synthesized by hot pressing at 1400°С for 15 and 30 min at a pressure of 30 MPa from powder mixtures, mainly from Ti/Si/TiC and Ti/TiSi2/TiC. The amount of the Ti3SiC2 phase synthesized from these mixtures was 94.0 and 95.9 vol %, respectively (1400°С, 30 min). The Ti3SiC2 phase crystallized as elongated grains. The effect of the hot pressing time on the formation of the Ti3SiC2 phase from the starting Ti/Si/TiC powders was determined. The final products contained titanium carbide and a small amount of silicon carbide as intermediate phases (for composites containing the starting silicon carbide powders). An excess of silicon leads to the formation of the largest amount of the Ti3SiC2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. N. I. Medvedeva, A. N. Enyashin, and A. L. Ivanovskii, J. Struct. Chem. 52, 785 (2011). https://doi.org/10.1134/S0022476611040226

    Article  CAS  Google Scholar 

  2. E. I. Istomina, P. V. Istomin, and A. V. Nadutkin, Russ. J. Inorg. Chem. 57, 1058 (2012). https://doi.org/10.1134/S0036023612080062

    Article  CAS  Google Scholar 

  3. E. I. Istomina, P. V. Istomin, and A. V. Nadutkin, Russ. J. Inorg. Chem. 58, 624 (2013). https://doi.org/10.1134/S0036023613060119

    Article  CAS  Google Scholar 

  4. K. R. Whittle, M. G. Blackford, R. D. Aughterson, et al., Acta Mater. 58, 4362 (2010). https://doi.org/10.1016/j.actamat.2010.04.029

    Article  CAS  Google Scholar 

  5. M. Le Flem, X. Liu, S. Doriot, et al., Int. J. Appl. Ceram. Technol. 7, 766 (2010). https://doi.org/10.1111/j.1744-7402.2010.02523.x

    Article  CAS  Google Scholar 

  6. M. Utili, M. Agostini, G. Coccoluto, et al., Nucl. Eng. Des. 241, 1295 (2011). https://doi.org/10.1016/j.nucengdes.2010.07.038

    Article  CAS  Google Scholar 

  7. Q. Wang, C. Hu, S. Cai, et al., Int. J. Appl. Ceram. Technol. 11, 911 (2014). https://doi.org/10.1111/ijac.12065

    Article  CAS  Google Scholar 

  8. Y. Zhu, A. Zhou, Y. Ji, et al., Ceram. Int. 41, 6950 (2015). https://doi.org/10.1016/j.ceramint.2015.01.150

    Article  CAS  Google Scholar 

  9. I. A. Rumyantsev and S. N. Perevislov, Refract. Ind. Ceram. 58, 405 (2017). https://doi.org/10.1007/s11148-017-0119-7

    Article  CAS  Google Scholar 

  10. D. D. Nesmelov, O. A. Kozhevnikov, S. S. Ordan’yan, et al., Glass Ceram. 74, 43 (2017). https://doi.org/10.1007/s10717-017-9925-0

    Article  CAS  Google Scholar 

  11. M. G. Frolova, A. V. Leonov, Y. F. Kargin, et al., Inorg. Mater. 9, 675 (2018). https://doi.org/10.1134/S2075113318040123

    Article  Google Scholar 

  12. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, et al., Refract. Ind. Ceram. 58, 577 (2018). https://doi.org/10.1007/s11148-018-0148-x

    Article  CAS  Google Scholar 

  13. S. N. Perevislov, A. S. Lysenkov, and S. V. Vikhman, Inorg. Mater. 53, 376 (2017). https://doi.org/10.1134/S0020168517040148

    Article  CAS  Google Scholar 

  14. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, Refract. Ind. Ceram. 59, 32 (2018). https://doi.org/10.1007/s11148-018-0178-4

    Article  CAS  Google Scholar 

  15. S. N. Perevislov, P. V. Shcherbak, and M. V. Tomkovich, Refract. Ind. Ceram. 59, 179 (2018). https://doi.org/10.1007/s11148-018-0202-8

    Article  CAS  Google Scholar 

  16. S. N. Perevislov, Refract. Ind. Ceram. 60, 168 (2019). https://doi.org/10.1007/s11148-019-00330-0

    Article  CAS  Google Scholar 

  17. O. A. Lukianova, A. N. Khmara, S. N. Perevislov, et al., Ceram. Int. 45, 9497 (2019). https://doi.org/10.1016/j.ceramint.2018.09.198

    Article  CAS  Google Scholar 

  18. S. Jacques, H. Fakih, and J. C. Viala, Thin Solid Films 518, 5071 (2010). https://doi.org/10.1016/j.tsf.2010.02.059

    Article  CAS  Google Scholar 

  19. F. Meng, B. Liang, and M. Wang, Int. J. Refract. Met. Hard Mater. 41, 152 (2013). https://doi.org/10.1016/j.ijrmhm.2013.03.005

    Article  CAS  Google Scholar 

  20. Y. Y. Zhu, J. Jia, A. G. Zhou, et al., Key Eng. Mater. 655, 68 (2015). https://doi.org/10.4028/www.scientific.net/KEM.655.68

    Article  Google Scholar 

  21. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, Metall. Mater. Trans. A 33, 3321 (2002). https://doi.org/10.1007/s11661-002-0320-1

    Article  Google Scholar 

  22. B. Y. Islak and E. Ayas, Ceram. Int. 45, 12297 (2019). https://doi.org/10.1016/j.ceramint.2019.03.144

    Article  CAS  Google Scholar 

  23. C. Magnus, J. Sharp, and W. M. Rainforth, Tribol. Trans. 63, 38 (2020). https://doi.org/10.1080/10402004.2019.1657534

    Article  CAS  Google Scholar 

  24. Y. Zhou, Z. Sun, S. Chen, et al., Mater. Res. Innovations 2, 142 (1998). https://doi.org/10.1007/s100190050076

    Article  CAS  Google Scholar 

  25. J. C. Viala, N. Peillon, F. Bosselet, et al., Mater. Sci. Eng., A 229, 95 (1997). https://doi.org/10.1016/S0921-5093(97)00002-6

    Article  Google Scholar 

  26. I. Kero, M. L. Antti, and M. Odén, in International Conference on Advanced Ceramics and Composites, Ed. by J. Salem, G. Hilmas, and W. Fahrenholtz (John Wiley & Sons, 2009). https://doi.org/10.1002/9780470456361.ch3

  27. C. Racault, F. Langlais, and R. Naslain, J. Mater. Sci. 29, 3384 (1994). https://doi.org/10.1007/BF00352037

    Article  CAS  Google Scholar 

  28. Z. Sun, Y. Zou, S. Tada, et al., Scr. Mater. 55, 1011 (2006). https://doi.org/10.1016/j.scriptamat.2006.08.019

    Article  CAS  Google Scholar 

  29. X. Fan, X. Yin, L. Wang, et al., Int. J. Refract. Met. Hard Mater. 45, 1 (2014). https://doi.org/10.1016/j.ijrmhm.2014.02.006

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (grant no. 20-21-00056 of RFBR–Rosatom).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This paper was presented at the Sixth Interdisciplinary Scientific Forum with international participation “New Materials and Advanced Technologies,” Moscow, November 23–26, 2020, https://n-materials.ru.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Semenova, V.V. & Lysenkov, A.S. Synthesis, Structure, and Properties of the Ti3SiC2 MAX Phases Obtained by Hot Pressing. Russ. J. Inorg. Chem. 66, 1100–1106 (2021). https://doi.org/10.1134/S0036023621080210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080210

Keywords:

Navigation