Skip to main content
Log in

Self-Propagating High-Temperature Synthesis of Ceramic Material Based on Aluminum-Magnesium Spinel and Titanium Diboride

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract―

The aim of this work is to synthesize ceramic composite materials based on aluminum-magnesium spinel strengthened by titanium diboride particles by the self-propagating high-temperature synthesis (SHS) and study the combustion characteristics of synthesized materials, their microstructure, and phase composition. For the synthesis of materials, powders of boron oxide, aluminum, magnesium, and titanium have been used. It is shown that changing the ratio of magnesium and aluminum in the composition of the initial charge results in changes in the phase composition of the synthesis products. As a result of the synthesis, composite materials based on aluminum-magnesium spinel with different contents of aluminum cations have been obtained: MgAl3O4, MgAl2O4, MgAlO4, and Mg1.5Ti1.5O4. It is shown that with an increase in the combustion temperature of the studied compositions, the morphology of the particles of the powders obtained with composite structures changes. It is shown that after SHS, crystallites of aluminum-magnesium spinel with a size of about 50 nm are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. C. Shen, H. Y. Zeng, B. F. C. A. Gohi, et al., J. Nanosci. Nanotechnol. 20, 5555 (2020). https://doi.org/10.1166/jnn.2020.17875

    Article  CAS  PubMed  Google Scholar 

  2. Q. Liu, Y. Jing, S. Su, et al., Opt. Mater. 104, 109938 (2020). https://doi.org/10.1016/j.optmat.2020.109938

    Article  CAS  Google Scholar 

  3. I. Ganesh, Int. Mater. Rev. 58, 63 (2013). https://doi.org/10.1179/1743280412y.0000000001

    Article  CAS  Google Scholar 

  4. N. M. Khaidukov, M. N. Brekhovskikh, N. Y. Kirikova, et al., Russ. J. Inorg. Chem. 65, 1135 (2020). https://doi.org/10.1134/S0036023620080069

    Article  CAS  Google Scholar 

  5. N. Radishevskaya, O. Lepakova, N. Karakchieva, et al., Metals 7, 295 (2017). https://doi.org/10.3390/met7080295

    Article  CAS  Google Scholar 

  6. C.-L. Yeh and Y.-C. Chen, Crystals 10, 210 (2020). https://doi.org/10.3390/cryst10030210

    Article  CAS  Google Scholar 

  7. F. Yang, Y. Yuan, J. Li, et al., J. Mater. Sci.: Mater. Electron. 31, 17375 (2020). https://doi.org/10.1007/s10854-020-04293-8

    Article  CAS  Google Scholar 

  8. X. Wang, Y. Tian, and J. Hao, J. Eur. Ceram. Soc. 40, 6149 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.07.008

    Article  CAS  Google Scholar 

  9. A. H. Nassajpour-Esfahani, R. Emadi, and A. Alhaji, J. Alloys Compd. 830, 154588 (2020). https://doi.org/10.1016/j.jallcom.2020.154588

    Article  CAS  Google Scholar 

  10. C.-L. Yeh and Y.-C. Chen, Molecules 25, 83 (2019). https://doi.org/10.3390/molecules25010083

    Article  CAS  PubMed Central  Google Scholar 

  11. G. P. Panasyuk, I. V. Kozerozhets, M. N. Danchevskaya, et al., Dokl. Chem. 487, 218 (2019). https://doi.org/10.1134/s0012500819080019

    Article  CAS  Google Scholar 

  12. Y. Hao, S. Wang, and K. B. Zhang, Mater. Chem. Phys. 253, 123323 (2020). https://doi.org/10.1016/j.matchemphys.2020.123323

    Article  CAS  Google Scholar 

  13. R. A. Hormozi, H. Tavakkoli, A. R. Shabari, et al., Russ. J. Inorg. Chem. 65, 1093 (2020). https://doi.org/10.1134/S0036023620070104

    Article  Google Scholar 

  14. G. P. Panasyuk, I. V. Kozerozhets, I. L. Voroshilov, et al., Russ. J. Inorg. Chem. 89, 592 (2015). https://doi.org/10.1134/S0036024415040196

    Article  CAS  Google Scholar 

  15. M. A. Baqiya and A. Taufiq, Sunaryono et al., in Magnetic Spinels - Synthesis, Properties and Applications (Intech Europe, Rijeka, 2017).

  16. Y. Wang, H. X. Li, X. G. Li, et al., RSC. Adv. 10, 40815 (2020). https://doi.org/10.1039/d0ra08387a

    Article  CAS  Google Scholar 

  17. S. V. Motloung, Mater. Res. Express 6, 116327 (2019). https://doi.org/10.1088/2053-1591/ab51ca

    Article  Google Scholar 

  18. Y. Hao and K. P. Wu, J. Mater. Sci. Mater. Electron. 30, 13151 (2019). https://doi.org/10.1007/s10854-019-01678-2

    Article  CAS  Google Scholar 

  19. H. Ozdemir and M. A. F. Oksuzomer, Powder Technol. 359, 107 (2020). https://doi.org/10.1016/j.powtec.2019.10.001

    Article  CAS  Google Scholar 

  20. R. Halder and S. Bandyopadhyay, Mater. Chem. Phys. 235, 121736 (2019). https://doi.org/10.1016/j.matchemphys.2019.121736

    Article  CAS  Google Scholar 

  21. X. M. Ren, B. Y. Ma, G. L. Zhang, et al., Mater. Chem. Phys. 252, 123309 (2020). https://doi.org/10.1016/j.matchemphys.2020.123309

    Article  CAS  Google Scholar 

  22. N. Obradovic, W. G. Fahrenholtz, S. Filipovic, et al., Ceram. Int. 45, 12015 (2019). https://doi.org/10.1016/j.ceramint.2019.03.095

    Article  CAS  Google Scholar 

  23. N. Shaikh, K. Patel, S. Pandian, et al., Arab. J. Geosci. 12, 538 (2019). https://doi.org/10.1007/s12517-019-4696-2

    Article  CAS  Google Scholar 

  24. A. G. Merzhanov, Dokl. Phys. Chem. 434, 159 (2010). https://doi.org/10.1134/s0012501610100015

    Article  CAS  Google Scholar 

  25. E. A. Levashov, A. S. Mukasyan, A. S. Rogachev, et al., Int. Mater. Rev. 64, 203 (2017). https://doi.org/10.1080/09506608.2016.1243291

    Article  CAS  Google Scholar 

  26. M. Isobe and Y. Ueda, J. Alloys Compd. 383, 85 (2004). https://doi.org/10.1016/j.jallcom.2004.04.013

    Article  CAS  Google Scholar 

  27. J. Huang, H. Zhou, N. Wang, et al., J. Mater. Sci.: Mater. Electron. 28, 4565 (2017). https://doi.org/10.1007/s10854-016-6092-y

    Article  CAS  Google Scholar 

  28. T. Sun, H. N. Xiao, Y. Cheng, et al., Ceram. Int. 35, 1051 (2009). https://doi.org/10.1016/j.ceramint.2008.04.017

    Article  CAS  Google Scholar 

  29. P. M. Bazhin, A. M. Stolin, A. S. Konstantinov, et al., Dokl. Chem. 488, 246 (2019). https://doi.org/10.1134/S0012500819090039

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-73-00235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chizhikov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

The article is published following the results of the 6th Interdisciplinary Scientific Forum with International Participation “New Materials and Advanced Technologies”, Moscow, November 23–26, 2020. https://n-materials.ru.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhikov, A.P., Konstantinov, A.S. & Bazhin, P.M. Self-Propagating High-Temperature Synthesis of Ceramic Material Based on Aluminum-Magnesium Spinel and Titanium Diboride. Russ. J. Inorg. Chem. 66, 1115–1120 (2021). https://doi.org/10.1134/S0036023621080039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080039

Keywords:

Navigation