Skip to main content
Log in

Effect of Complex Additives Based on Iron, Cobalt, and Manganese Oxides and Sodium Silicate on the Sintering and Properties of Low-Temperature Ceramics 3Y–TZP–Al2O3

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of complex additives based on cobalt, iron, and manganese oxides and sodium silicate on the phase composition, microstructure, mechanical properties, and sintering of tetragonal zirconia ceramics stabilized with 3 mol % yttria and containing 10 wt % alumina (3Y–TZP–10Al2O3) was studied. The introduction of complex additives significantly affected sintering of the ceramics: the open porosity was less than 1% after annealing at 1250°C. The use of Na2Si2O5–0.33% Mn as a sintering additive provided the minimum of porosity for sintering temperature of 1300°C. Ceramics with flexural strength of 500 ± 16 MPa and the microhardness of 10 GPa was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. J. Chevalier, L. Gremillard, A. V. Virkar, et al., J. Am. Ceram. Soc. 92, 1901 (2009). https://doi.org/10.1111/j.1551-2916.2009.03278.x

    Article  CAS  Google Scholar 

  2. R. F. Marcomini and D. M. P. F. Souza, Mater. Res. 19, 45 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0161

    Article  CAS  Google Scholar 

  3. F. D. Chong, C. Y. Tan, R. Singh, et al., Mater. Charact. 120, 331 (2016). https://doi.org/10.1016/j.matchar.2016.09.001

    Article  CAS  Google Scholar 

  4. A. J. Flegler, T. E. Burye, Q. Yang, et al., Ceram. Int. 40, 16323 (2014). https://doi.org/10.1016/j.ceramint.2014.07.071

    Article  CAS  Google Scholar 

  5. Y. I. Folomeikin, F. N. Karachevtsev, and V. L. Stolyarova, Russ. J. Inorg. Chem. 64, 934 (2019). https://doi.org/10.1134/S0036023619070088

    Article  CAS  Google Scholar 

  6. E. P. D’yachkov and P. N. D’yachkov, Russ. J. Inorg. Chem. 64, 637 (2019). https://doi.org/10.1134/S003602361905005X

    Article  Google Scholar 

  7. M. Goldberg, T. Obolkina, S. Smirnov, et al., Materials 13, 2789 (2020). https://doi.org/10.3390/ma13122789

    Article  CAS  PubMed Central  Google Scholar 

  8. T. O. Obolkina, M. A. Goldberg, S. V. Smirnov, et al., Dokl. Chem. 493, 99 (2020). https://doi.org/10.1134/S0012500820070010

    Article  CAS  Google Scholar 

  9. T. O. Obolkina, M. A. Goldberg, S. V. Smirnov, et al., Inorg. Mater. (2020). https://doi.org/10.1134/S0020168520020156

  10. C. Santos, R. C. Souza, A. F. Habibe, et al., Mater. Sci. Eng., A 478, 257 (2008). https://doi.org/10.1016/j.msea.2007.06.009

    Article  CAS  Google Scholar 

  11. S. Tekeli, M. Erdogan, and B. Aktas, Mater. Sci. Eng., A 386, 1 (2004). https://doi.org/10.1016/j.msea.2004.07.057

    Article  CAS  Google Scholar 

  12. M. Lakusta, I. Danilenko, T. Konstantinova, et al., Nanoscale Res. Lett. 12, 1 (2017). https://doi.org/10.1186/s11671-017-2178-6

    Article  CAS  Google Scholar 

  13. S. A. Ghyngazov and S. A. Shevelev, J. Therm. Anal. Calorim 134, 45 (2018). https://doi.org/10.1007/s10973-018-7249-0

    Article  CAS  Google Scholar 

  14. S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, et al., Ceram. Int. 46, 10910 (2020). https://doi.org/10.1016/j.ceramint.2020.01.105

    Article  CAS  Google Scholar 

  15. S. Aravindan and R. Krishnamurthy, Mater. Lett. 38, 245 (1999). https://doi.org/10.1016/S0167-577X(98)00166-9

    Article  CAS  Google Scholar 

  16. D. B. Belykh, V. A. Zhabrev, and S. V. Zaitsev, Glass Phys. Chem. 29, 75 (2003). https://doi.org/10.1023/A:1022365927875

    Article  CAS  Google Scholar 

  17. S. M. Barinov and V. Ya. Shevchenko, Strength of Technical Ceramics (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  18. X. J. Sheng, H. Xu, Z. H. Jin, et al., Mater. Lett. 58, 1750 (2004). https://doi.org/10.1016/j.matlet.2003.10.062

    Article  CAS  Google Scholar 

  19. Z. K. Wu, N. Li, C. Jian, et al., Ceram. Int. 39, 7199 (2013). https://doi.org/10.1016/j.ceramint.2013.02.065

    Article  CAS  Google Scholar 

  20. Q. Jing, J. Bao, and F. Ruan, Ceram. Int. 45, 6066 (2019). https://doi.org/10.1016/j.ceramint.2018.12.078

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-29-11053 mk).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. O. Obolkina.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

ADDITIONAL INFORMATION

This paper is based on the results of the Sixth Interdisciplinary Scientific Forum with International Participation “New Materials and Advanced Technologies”, Moscow, November 23–26, 2020, http://n-materials.ru.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obolkina, T.O., Goldberg, M.A., Antonova, O.S. et al. Effect of Complex Additives Based on Iron, Cobalt, and Manganese Oxides and Sodium Silicate on the Sintering and Properties of Low-Temperature Ceramics 3Y–TZP–Al2O3. Russ. J. Inorg. Chem. 66, 1223–1228 (2021). https://doi.org/10.1134/S0036023621080192

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621080192

Keywords:

Navigation