Skip to main content
Log in

Higher-order resting state network association with the useful field of view task in older adults

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Speed-of-processing abilities decline with age yet are important in performing instrumental activities of daily living. The useful field of view, or Double Decision task, assesses speed-of-processing and divided attention. Performance on this task is related to attention, executive functioning, and visual processing abilities in older adults, and poorer performance predicts more motor vehicle accidents in the elderly. Cognitive training in this task reduces risk of dementia. Structural and functional neural correlates of this task suggest that higher-order resting state networks may be associated with performance on the Double Decision task, although this has never been explored. This study aimed to assess the association of within-network connectivity of the default mode network, dorsal attention network, frontoparietal control network, and cingulo-opercular network with Double Decision task performance, and subcomponents of this task in a sample of 267 healthy older adults. Multiple linear regressions showed that connectivity of the cingulo-opercular network is associated with visual speed-of-processing and divided attention subcomponents of the Double Decision task. Cingulo-opercular network and frontoparietal control network connectivity is associated with Double Decision task performance. Stronger connectivity is related to better performance in all cases. These findings confirm the unique role of the cingulo-opercular network in visual attention and sustained divided attention. Frontoparietal control network connectivity, in addition to cingulo-opercular network connectivity, is related to Double Decision task performance, a task implicated in reduced dementia risk. Future research should explore the role these higher-order networks play in reduced dementia risk after cognitive intervention using the Double Decision task.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adapted from POSIT Brain HQ, used with permission. Panel A = Hawk Eye, panel B = Divided Attention, panel C = Double Decision

Fig. 2
Fig. 3

Similar content being viewed by others

Data and materials availability

The data analyzed in this study is subject to the following licenses/restrictions: data are managed under the data sharing agreement established with NIA and the parent R01 clinical trial Data Safety and Monitoring Board in the context of an ongoing Phase III clinical trial (ACT study, R01AG054077). All trial data will be made publicly available 2 years after completion of the parent clinical trial, per NIA and DSMB agreement. Requests for baseline data can be submitted to the ACT Publication and Presentation (P&P) Committee and will require submission of a data use, authorship, and analytic plan for review by the P&P committee (ajwoods@phhp.ufl.edu). Requests to access these datasets should be directed to ajwoods@ufl.edu.

Code availability

Not applicable.

References

  1. Parkin AJ, Java RI. Deterioration of frontal lobe function in normal aging: influences of fluid intelligence versus perceptual speed. Neuropsychology. 1999;13:7.

    Article  Google Scholar 

  2. Salthouse TA. Selective review of cognitive aging. J Int Neuropsychol Soc. 2010;16:754–60. https://doi.org/10.1017/S1355617710000706.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Verhaeghen P, Salthouse TA. Meta-analyses of age-cognition relations in adulthood: estimates of linear and nonlinear age effects and structural models. Psychol Bull. 1997;122:19.

    Article  Google Scholar 

  4. Clay OJ, Edwards JD, Ross LA, Okonkwo O, Wadley VG, Roth DL, et al. Visual function and cognitive speed of processing mediate age-related decline in memory span and fluid intelligence. J Aging Health. 2009;21:547–66. https://doi.org/10.1177/0898264309333326.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ebaid D, Crewther SG, MacCalman K, Brown A, Crewther DP. Cognitive processing speed across the lifespan: beyond the influence of motor speed. Front Aging Neurosci 2017;9. https://doi.org/10.3389/fnagi.2017.00062.

  6. Reuter-Lorenz PA, Festini SB, Jantz TK. "Executive functions and neurocognitive aging." In Handbook of the psychology of aging, pp. 67-81. Academic Press, 2021.

  7. Salthouse TA. Decomposing age correlations on neuropsychological and cognitive variables. J Int Neuropsychol Soc. 2009;15:650–61. https://doi.org/10.1017/S1355617709990385.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cahn-Weiner DA, Boyle PA, Malloy PF. Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Appl Neuropsychol. 2002;9:187–91. https://doi.org/10.1207/S15324826AN0903_8.

    Article  PubMed  Google Scholar 

  9. Johnson JK, Lui L-Y, Yaffe K. Executive function, more than global cognition, predicts functional decline and mortality in elderly women 2007:15.

  10. Aust F, Edwards JD. Incremental validity of useful field of view subtests for the prediction of instrumental activities of daily living. J Clin Exp Neuropsychol. 2016;38:497–515. https://doi.org/10.1080/13803395.2015.1125453.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ball KK. Clinical visual perimetry under-estimates peripheral field problems in older adults. Clin Vis Sci. 1990;5:113–25.

    Google Scholar 

  12. Woutersen K, Guadron L, van den Berg AV, Boonstra FN, Theelen T, Goossens J. A meta-analysis of perceptual and cognitive functions involved in useful-field-of-view test performance. J Vis. 2017;17:11. https://doi.org/10.1167/17.14.11.

    Article  PubMed  Google Scholar 

  13. Ball KK, Owsley C, Sloane ME, Roenker DL, Bruni JR. Visual attention problems as a predictor of vehicle crashes in older drivers. Invest Ophthalmol Vis Sci. 1993;34:3110–23.

    CAS  PubMed  Google Scholar 

  14. Clay OJ, Wadley VG, Edwards JD, Roth DL, Roenker DL, Ball KK. cumulative meta-analysis of the relationship between useful field of view and driving performance in older adults: current and future implications. Optom Vis Sci. 2005;82:724–31. https://doi.org/10.1097/01.opx.0000175009.08626.65.

    Article  PubMed  Google Scholar 

  15. Ball K, Berch DB, Helmers KF, Jobe JB, Leveck MD, Marsiske M, et al. Effects of cognitive training interventions with older adults: a randomized controlled trial. JAMA. 2002;288:2271. https://doi.org/10.1001/jama.288.18.2271.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rebok GW, Ball K, Guey LT, Jones RN, Kim H-Y, King JW, et al. Ten-year effects of the advanced cognitive training for independent and vital elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62:16–24. https://doi.org/10.1111/jgs.12607.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Edwards JD, Xu H, Clark DO, Guey LT, Ross LA, Unverzagt FW. Speed of processing training results in lower risk of dementia. Alzheimers Dement Transl Res Clin Interv. 2017;3:603–11. https://doi.org/10.1016/j.trci.2017.09.002.

    Article  Google Scholar 

  18. Ross LA, Sprague BN, Phillips CB, O’Connor ML, Dodson JE. The impact of three cognitive training interventions on older adults’ physical functioning across 5 years. J Aging Health. 2018;30:475–98. https://doi.org/10.1177/0898264316682916.

    Article  PubMed  Google Scholar 

  19. Wolinsky FD, Mahncke HW, Kosinski M, Unverzagt FW, Smith DM, Jones RN, et al. The ACTIVE cognitive training trial and predicted medical expenditures. BMC Health Serv Res. 2009;9:109–109. https://doi.org/10.1186/1472-6963-9-109.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kraft JN, O’Shea A, Albizu A, Evangelista ND, Hausman HK, Boutzoukas E, et al. structural neural correlates of double decision performance in older adults. Front Aging Neurosci. 2020;12:278. https://doi.org/10.3389/fnagi.2020.00278.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Schmidt EL, Burge W, Visscher KM, Ross LA. Cortical thickness in frontoparietal and cingulo-opercular networks predicts executive function performance in older adults. Neuropsychology. 2016;30:322–31. https://doi.org/10.1037/neu0000242.

    Article  PubMed  Google Scholar 

  22. Ross LA, Webb CE, Whitaker C, Hicks JM, Schmidt EL, Samimy S, et al. The effects of useful field of view training on brain activity and connectivity. J Gerontol Ser B. 2019;74:1152–62. https://doi.org/10.1093/geronb/gby041.

    Article  Google Scholar 

  23. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106:1125–65. https://doi.org/10.1152/jn.00338.2011.

    Article  PubMed  Google Scholar 

  24. Geerligs L, Renken RJ, Saliasi E, Maurits NM, Lorist MM. A brain-wide study of age-related changes in functional connectivity. Cereb Cortex. 2015;25:1987–99. https://doi.org/10.1093/cercor/bhu012.

    Article  PubMed  Google Scholar 

  25. Hausman HK, O’Shea A, Kraft JN, Boutzoukas EM, Evangelista ND, Van Etten EJ, et al. The role of resting-state network functional connectivity in cognitive aging. Front Aging Neurosci. 2020;12:177. https://doi.org/10.3389/fnagi.2020.00177.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Andrews-Hanna JR, Snyder AZ, Vincent JL, Lustig C, Head D, Raichle ME, et al. Disruption of large-scale brain systems in advanced aging. Neuron. 2007;56:924–35. https://doi.org/10.1016/j.neuron.2007.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Damoiseaux JS, Beckmann CF, Arigita EJS, Barkhof F, Scheltens Ph, Stam CJ, et al. Reduced resting-state brain activity in the “default network” in normal aging. Cereb Cortex. 2008;18:1856–64. https://doi.org/10.1093/cercor/bhm207.

    Article  CAS  PubMed  Google Scholar 

  28. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci. 2003;100:253–8. https://doi.org/10.1073/pnas.0135058100.

    Article  CAS  PubMed  Google Scholar 

  29. Greicius MD, Srivastava G, Reiss AL, Menon V. Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci. 2004;101:4637–42. https://doi.org/10.1073/pnas.0308627101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grady C, Sarraf S, Saverino C, Campbell K. Age differences in the functional interactions among the default, frontoparietal control, and dorsal attention networks. Neurobiol Aging. 2016;41:159–72. https://doi.org/10.1016/j.neurobiolaging.2016.02.020.

    Article  PubMed  Google Scholar 

  31. Shaw EE, Schultz AP, Sperling RA, Hedden T. functional connectivity in multiple cortical networks is associated with performance across cognitive domains in older adults. Brain Connect. 2015;5:505–16. https://doi.org/10.1089/brain.2014.0327.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Penning MD, Ruiz-Rizzo AL, Redel P, Müller HJ, Salminen T, Strobach T, et al. alertness training increases visual processing speed in healthy older adults. Psychol Sci 2021:095679762096552. https://doi.org/10.1177/0956797620965520.

  33. Ruiz-Rizzo AL, Sorg C, Napiórkowski N, Neitzel J, Menegaux A, Müller HJ, et al. Decreased cingulo-opercular network functional connectivity mediates the impact of aging on visual processing speed. Neurobiol Aging. 2019;73:50–60. https://doi.org/10.1016/j.neurobiolaging.2018.09.014.

    Article  PubMed  Google Scholar 

  34. Anderson ND, Iidaka T, Cabeza R, Kapur S, McIntosh AR, Craik FIM. The effects of divided attention on encoding- and retrieval-related brain activity: a PET study of younger and older adults. J Cogn Neurosci. 2000;12:775–92. https://doi.org/10.1162/089892900562598.

    Article  CAS  PubMed  Google Scholar 

  35. Verghese J, Buschke H, Viola L, Katz M, Hall C, Kuslansky G, et al. Validity of divided attention tasks in predicting falls in older individuals: a preliminary study. J Am Geriatr Soc. 2002;50:1572–6. https://doi.org/10.1046/j.1532-5415.2002.50415.x.

    Article  PubMed  Google Scholar 

  36. Johnson JA, Zatorre RJ. Neural substrates for dividing and focusing attention between simultaneous auditory and visual events. Neuroimage. 2006;31:1673–81. https://doi.org/10.1016/j.neuroimage.2006.02.026.

    Article  PubMed  Google Scholar 

  37. Wimmer RD, Schmitt LI, Davidson TJ, Nakajima M, Deisseroth K, Halassa MM. Thalamic control of sensory selection in divided attention. Nature. 2015;526:705–9. https://doi.org/10.1038/nature15398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coste CP, Kleinschmidt A. Cingulo-opercular network activity maintains alertness. Neuroimage. 2016;128:264–72. https://doi.org/10.1016/j.neuroimage.2016.01.026.

    Article  PubMed  Google Scholar 

  39. Sadaghiani S, D’Esposito M. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cereb Cortex. 2015;25:2763–73. https://doi.org/10.1093/cercor/bhu072.

    Article  PubMed  Google Scholar 

  40. Serra L, Cercignani M, Mastropasqua C, Torso M, Spanò B, Makovac E, et al. Longitudinal changes in functional brain connectivity predicts conversion to Alzheimer’s disease. J Alzheimers Dis. 2016;51:377–89. https://doi.org/10.3233/JAD-150961.

    Article  PubMed  Google Scholar 

  41. Woods AJ, Cohen R, Marsiske M, Alexander GE, Czaja SJ, Wu S. Augmenting cognitive training in older adults (The ACT Study): design and methods of a phase III tDCS and cognitive training trial. Contemp Clin Trials. 2018;65:19–32. https://doi.org/10.1016/j.cct.2017.11.017.

    Article  PubMed  Google Scholar 

  42. Weintraub S. UDS-III Norms. 2017.

  43. Penny WD, Friston KJ, Ashburner JT, Kiebel SJ, Nichols TE. Statistical parametric mapping: the analysis of functional brain images. Elsevier; 2011.

  44. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41. https://doi.org/10.1089/brain.2012.0073.

    Article  PubMed  Google Scholar 

  45. Behzadi Y, Restom K, Liau J, Liu TT. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage. 2007;37:90–101. https://doi.org/10.1016/j.neuroimage.2007.04.042.

    Article  PubMed  Google Scholar 

  46. Friston KJ, Williams S, Howard R, Frackowiak RSJ, Turner R. Movement-Related effects in fMRI time-series: Movement Artifacts in fMRI. Magn Reson Med. 1996;35:346–55. https://doi.org/10.1002/mrm.1910350312.

    Article  CAS  PubMed  Google Scholar 

  47. Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL, Petersen SE. Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage. 2014;84:320–41. https://doi.org/10.1016/j.neuroimage.2013.08.048.

    Article  PubMed  Google Scholar 

  48. Parkes L, Fulcher B, Yücel M, Fornito A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage. 2018;171:415–36. https://doi.org/10.1016/j.neuroimage.2017.12.073.

    Article  PubMed  Google Scholar 

  49. Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013;64:240–56. https://doi.org/10.1016/j.neuroimage.2012.08.052.

    Article  PubMed  Google Scholar 

  50. Van Dijk KRA, Sabuncu MR, Buckner RL. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage. 2012;59:431–8. https://doi.org/10.1016/j.neuroimage.2011.07.044.

    Article  PubMed  Google Scholar 

  51. Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95:103208–103208. https://doi.org/10.1016/j.jbi.2019.103208.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–81. https://doi.org/10.1016/j.jbi.2008.08.010.

    Article  PubMed  Google Scholar 

  53. Owsley C, Ball K, Sloane ME, Roenker DL, Bruni JR. Visual/cognitive correlates of vehicle accidents in older drivers. Psychol Aging. 1991;6:403–15. https://doi.org/10.1037/0882-7974.6.3.403.

    Article  CAS  PubMed  Google Scholar 

  54. Owsley C, Sloane M, McGwin G Jr, Ball K. Timed instrumental activities of daily living tasks: relationship to cognitive function and everyday performance assessments in older adults. Gerontology. 2002;48:254–65. https://doi.org/10.1159/000058360.

    Article  PubMed  Google Scholar 

  55. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27:2349–56. https://doi.org/10.1523/JNEUROSCI.5587-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214:655–67. https://doi.org/10.1007/s00429-010-0262-0.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Vaden KI, Kuchinsky SE, Cute SL, Ahlstrom JB, Dubno JR, Eckert MA. The cingulo-opercular network provides word-recognition benefit. J Neurosci. 2013;33:18979–86. https://doi.org/10.1523/JNEUROSCI.1417-13.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Salthouse TA, Ferrer-Caja E. What needs to be explained to account for age-related effects on multiple cognitive variables? Psychol Aging. 2003;18:91–110. https://doi.org/10.1037/0882-7974.18.1.91.

    Article  PubMed  Google Scholar 

  59. Grady CL, Protzner AB, Kovacevic N, Strother SC, Afshin-Pour B, Wojtowicz M, et al. A multivariate analysis of age-related differences in default mode and task-positive networks across multiple cognitive domains. Cereb Cortex. 2010;20:1432–47. https://doi.org/10.1093/cercor/bhp207.

    Article  PubMed  Google Scholar 

  60. Anticevic A, Cole MW, Murray JD, Corlett PR, Wang X-J, Krystal JH. The role of default network deactivation in cognition and disease. Trends Cogn Sci. 2012;16:584–92. https://doi.org/10.1016/j.tics.2012.10.008.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liang P, Wang Z, Yang Y, Jia X, Li K. Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PLoS ONE. 2011;6: e22153. https://doi.org/10.1371/journal.pone.0022153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Vieira BH, Rondinoni C, Garrido Salmon CE. Evidence of regional associations between age-related inter-individual differences in resting-state functional connectivity and cortical thinning revealed through a multi-level analysis. Neuroimage. 2020;211: 116662. https://doi.org/10.1016/j.neuroimage.2020.116662.

    Article  PubMed  Google Scholar 

  63. Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Kawabata K, et al. Reorganization of brain networks and its association with general cognitive performance over the adult lifespan. Sci Rep. 2019;9:11352. https://doi.org/10.1038/s41598-019-47922-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hopfinger JB, Buonocore MH, Mangun GR. The neural mechanisms of top-down attentional control. Nat Neurosci. 2000;3:284–91. https://doi.org/10.1038/72999.

    Article  CAS  PubMed  Google Scholar 

  65. Lanssens A, Pizzamiglio G, Mantini D, Gillebert CR. Role of the dorsal attention network in distracter suppression based on features. Cogn Neurosci. 2020;11:37–46. https://doi.org/10.1080/17588928.2019.1683525.

    Article  PubMed  Google Scholar 

  66. Gao W, Lin W. Frontal parietal control network regulates the anti-correlated default and dorsal attention networks. Hum Brain Mapp. 2012;33:192–202. https://doi.org/10.1002/hbm.21204.

    Article  PubMed  Google Scholar 

  67. Avelar-Pereira B, Bäckman L, Wåhlin A, Nyberg L, Salami A. Age-related differences in dynamic interactions among default mode, frontoparietal control, and dorsal attention networks during resting-state and interference resolution. Front Aging Neurosci. 2017;9:152. https://doi.org/10.3389/fnagi.2017.00152.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Franzmeier N, Göttler J, Grimmer T, Drzezga A, Áraque-Caballero MA, Simon-Vermot L, et al. Resting-state connectivity of the left frontal cortex to the default mode and dorsal attention network supports reserve in mild cognitive impairment. Front Aging Neurosci. 2017;9:264. https://doi.org/10.3389/fnagi.2017.00264.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ewers M, Luan Y, Frontzkowski L, Neitzel J, Rubinski A, Dichgans M, et al. Segregation of functional networks is associated with cognitive resilience in Alzheimer’s disease. Brain 2021:awab112. https://doi.org/10.1093/brain/awab112.

  70. Turney IC, Chesebro AG, Rentería MA, Lao PJ, Beato JM, Schupf N, et al. APOE ε4 and resting-state functional connectivity in racially/ethnically diverse older adults. Alzheimers Dement Diagn Assess Dis Monit. 2020;12: e12094. https://doi.org/10.1002/dad2.12094.

    Article  Google Scholar 

  71. Clark US, Miller ER, Hegde RR. Experiences of discrimination are associated with greater resting amygdala activity and functional connectivity. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:367–78. https://doi.org/10.1016/j.bpsc.2017.11.011.

    Article  PubMed  Google Scholar 

  72. Han SD, Lamar M, Fleischman D, Kim N, Bennett DA, Lewis TT, et al. Self-reported experiences of discrimination in older black adults are associated with insula functional connectivity. Brain Imaging Behav. 2020. https://doi.org/10.1007/s11682-020-00365-9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Pietzuch M, King AE, Ward DD, Vickers JC. The influence of genetic factors and cognitive reserve on structural and functional resting-state brain networks in aging and Alzheimer’s disease. Front Aging Neurosci. 2019;11:30. https://doi.org/10.3389/fnagi.2019.00030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen C, Zissimopoulos JM. Racial and ethnic differences in trends in dementia prevalence and risk factors in the United States. Alzheimers Dement Transl Res Clin Interv. 2018;4:510–20. https://doi.org/10.1016/j.trci.2018.08.009.

    Article  Google Scholar 

  75. Indahlastari A, Hardcastle C, Albizu A, Alvarez-Alvarado S, Boutzoukas EM, Evangelista ND, et al. A systematic review and meta-analysis of transcranial direct current stimulation to remediate age-related cognitive decline in healthy older adults. Neuropsychiatr Dis Treat. 2021;17:971–90. https://doi.org/10.2147/NDT.S259499.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank all of our participants for their time and research assistants for their hard work and instrumental role in making this manuscript possible.

Funding

We would like to acknowledge support by the National Institute of Aging/National Institutes of Health (T32AG020499, K01AG050707, R01AG054077, P30AG019610, and T32AG061892), the University of Florida Center for Cognitive Aging and Memory Clinical Translational Research, the state of Arizona and Arizona Department of Health Services, the McKnight Brain Research Foundation, and the National Heart, Lung, and Blood Institute (T32HL134621).

Author information

Authors and Affiliations

Authors

Contributions

Cheshire Hardcastle wrote the first draft of the manuscript under the mentorship of Adam J. Woods, and all authors commented on and approved previous versions. Material preparation and data collection were performed by Jessica Kraft, Alejandro Albizu, Hanna K. Hausman, Nicole D. Evangelista, Emanuel M. Boutzoukas, Andrew O’Shea, Emily J. Van Etten, Pradyumna H. Bharadwaj, Hyun Song, and Samantha Smith. Cheshire Hardcastle, Jessica Kraft, and Hanna Hausman contributed to data analysis and processing. Eric Porges, Steven T. DeKosky, Georg A. Hishaw, Samuel S. Wu, Michael Marsiske, Ronald Cohen, and Gene E. Alexander contributed to study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adam J. Woods.

Ethics declarations

Ethics approval

The studies involving human participants were reviewed and approved by the University of Florida Institutional Review Board and the University of Arizona Institutional Review Board. The patients/participants provided their written informed consent to participate in this study.

Consent to participate

Freely-given, informed consent to participate in the study was obtained from all study participants.

Consent for publication

The participants provided informed consent regarding publishing their data.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardcastle, C., Hausman, H.K., Kraft, J.N. et al. Higher-order resting state network association with the useful field of view task in older adults. GeroScience 44, 131–145 (2022). https://doi.org/10.1007/s11357-021-00441-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00441-y

Keywords

Navigation