Skip to main content
Log in

Cracks Analysis of Graded Structural Material Fabricated by Hybrid Additive and Subtractive Manufacturing

  • Additive Manufacturing: Functionally Graded Alloys
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Graded structural materials (GSMs) with variable performance and composition have a full application in the aerospace industry. Hybrid additive and subtractive manufacturing is very convenient to fabricate GSM by adjusting the composition of the deposited materials, removing the excess parts and improving the overall dimensions. Crack is a very significant defect in blocky GSM components because of the excessive heat accumulation and uneven distribution of residual stress. To analyze the reason and effects of cracks, blocky and thin-walled GSMs were fabricated. By analyzing the crack morphology, microstructures, element distribution and oxidation, results show that IN718 had much better oxidation resistance than 316L, which led to cracks appearing on the side of 316L. By adjusting the blocky structures to thin-walled structures, huge cracks almost disappeared. However, the poor bonding strength of the interface resulted in worse tensile strength of GSM than single 316L or IN718 by laser depositing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

GSM:

Graded structural material

HASM:

Hybrid additive and subtractive manufacturing

316L:

316L stainless steel

IN718:

Inconel 718

DED:

Directed energy deposition

AM:

Additive manufacturing

SM:

Subtractive machining

SEM:

Scanning electron microscope

EDS:

Energy-dispersive spectroscopy

References

  1. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang, and E.J. Lavernia, Mater. Sci. Eng. A 764, 138209. (2019).

    Article  Google Scholar 

  2. W. Meng, Y. Xiaohui, W. Zhang, F. Junfei, G. Lijie, M. Qunshuang, and C. Bing, J. Mater. Process. Technol. 275, 116368. (2020).

    Article  Google Scholar 

  3. J. Nie, L. Wei, D. Li, L. Zhao, Y. Jiang, and Q. Li, Addit. Manuf. 35, 101295. (2020).

    Google Scholar 

  4. Y. Su, B. Chen, C. Tan, X. Song, and J. Feng, J. Mater. Process. Technol. 283, 116702. (2020).

    Article  Google Scholar 

  5. C. Tan, Y. Chew, G. Bi, D. Wang, W. Ma, Y. Yang, and K. Zhou, J. Mater. Sci. Technol. 72, 217. (2021).

    Article  Google Scholar 

  6. J.M. Flynn, A. Shokrani, S.T. Newman, and V. Dhokia, Int. J. Mach. Tools Manuf. 101, 79. (2016).

    Article  Google Scholar 

  7. J. Moritz, A. Seidel, M. Kopper, J. Bretschneider, J. Gumpinger, T. Finaske, M. Riede, M. Schneeweiß, E. López, F. Brückner, C. Leyens, T. Rohr, and T. Ghidini, Int. J. Adv. Manuf. Technol. 107, 2995. (2020).

    Article  Google Scholar 

  8. B. Onuike, and A. Bandyopadhyay, Mater. Lett. 252, 256. (2019).

    Article  Google Scholar 

  9. T. Yamazaki, Procedia CIRP 42, 81. (2016).

    Article  Google Scholar 

  10. Z. Zhu, V. Dhokia, A. Nassehi, and S.T. Newman, Robot. Comput. Integr. Manuf. 37, 23. (2016).

    Article  Google Scholar 

  11. Y. Zhao, J. Sun, J. Li, P. Wang, Z. Zheng, J. Chen, and Y. Yan, J. Alloys Compd. 769, 898. (2018).

    Article  Google Scholar 

  12. K. Salonitis, L. D’Alvise, B. Schoinochoritis, and D. Chantzis, Int. J. Adv. Manuf. Technol. 85, 2401. (2016).

    Article  Google Scholar 

  13. Z. Ye, Z. Zhang, X. Jin, M.Z. Xiao, and J. Su, Int. J. Adv. Manuf. Technol. 88, 2237. (2017).

    Article  Google Scholar 

  14. K.P. Karunakaran, S. Suryakumar, V. Pushpa, and S. Akula, Int. J. Adv. Manuf. Technol. 45, 690. (2009).

    Article  Google Scholar 

  15. S. Kapil, F. Legesse, S. Negi, K.P. Karunakaran, and S. Bag, Prog. Addit. Manuf. 5, 183. (2020).

    Article  Google Scholar 

  16. P. Li, Y. Gong, Y. Xu, Y. Qi, Y. Sun, and H. Zhang, Arch. Civ. Mech. Eng. 19, 820. (2019).

    Article  Google Scholar 

  17. P. Prabhakar, W.J. Sames, R. Dehoff, and S.S. Babu, Addit. Manuf. 7, 83. (2015).

    Google Scholar 

  18. P. Li, Y. Gong, X. Wen, B. Xin, Y. Liu, and S. Qu, Int. J. Adv. Manuf. Technol. 98, 687. (2018).

    Article  Google Scholar 

  19. C. Juillet, A. Oudriss, J. Balmain, X. Feaugas, and F. Pedraza, Corros. Sci. 142, 266. (2018).

    Article  Google Scholar 

  20. P. Nie, O.A. Ojo, and Z. Li, Acta Mater. 77, 85. (2014).

    Article  Google Scholar 

  21. X. Wang, P.W. Liu, Y. Ji, Y. Liu, M.H. Horstemeyer, and L. Chen, J. Mater. Eng. Perform. 28, 657. (2019).

    Article  Google Scholar 

  22. M. Akbari, and R. Kovacevic, Addit. Manuf. 23, 487. (2018).

    Google Scholar 

  23. A. Riemer, S. Leuders, M. Thöne, H.A. Richard, T. Tröster, and T. Niendorf, Eng. Fract. Mech. 120, 15. (2014).

    Article  Google Scholar 

  24. T. Vilaro, C. Colin, J.D. Bartout, L. Nazé, and M. Sennour, Mater. Sci. Eng. A 534, 446. (2012).

    Article  Google Scholar 

  25. F. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang, Opt. Laser Technol. 43, 208. (2011).

    Article  Google Scholar 

  26. S. Chen, J. Huang, J. Xia, X. Zhao, and S. Lin, J. Mater. Process. Technol. 222, 43. (2015).

    Article  Google Scholar 

  27. P. Li, H. Dong, Y. Xia, X. Hao, S. Wang, L. Pan, and J. Zhou, J. Manuf. Process. 33, 54. (2018).

    Article  Google Scholar 

  28. S. Chandrasekaran, S. Hari, and M. Amirthalingam, Mater. Sci. Eng. A 792, 139530. (2020).

    Article  Google Scholar 

  29. S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, S. Shamsdini, J. Li, and M. Mohammadi, Addit. Manuf. 29, 100797. (2019).

    Google Scholar 

  30. L. Liu, Z. Zhuang, F. Liu, and M. Zhu, Int. J. Adv. Manuf. Technol. 69, 2131. (2013).

    Article  Google Scholar 

  31. M.H. Ghoncheh, M. Sanjari, E. Cyr, J. Kelly, H. Pirgazi, S. Shakerin, A. Hadadzadeh, B.S. Amirkhiz, L.A.I. Kestens, and M. Mohammadi, Int. J. Plast. 133, 102840. (2020).

    Article  Google Scholar 

  32. H.C. Dey, M. Ashfaq, A.K. Bhaduri, and K.P. Rao, J. Mater. Process. Technol. 209, 5862. (2009).

    Article  Google Scholar 

  33. M. Velu, and S. Bhat, Mater. Des. 47, 793. (2013).

    Article  Google Scholar 

  34. H. Naffakh, M. Shamanian, and F. Ashrafizadeh, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 2403. (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key of Research and Development Plan: Research on common key technologies of clean cutting (No. 2019YFB2005401), the National Natural Science Foundation of China (Nos. 51775250 and 51875265), the Demonstration and Extension Project of Jiangsu Provincial Modern Agricultural Equipment and Technology (No. NJ2019-20), the Six Major Talent Peaks of Jiangsu Province (No. 2019−GDZB−251), and the Synergistic Innovation Project of Jiangsu Modern Agricultural Equipment and Technology (No. 4091600011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Li, Jianzhong Zhou or Aixin Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Zhou, J., Li, L. et al. Cracks Analysis of Graded Structural Material Fabricated by Hybrid Additive and Subtractive Manufacturing. JOM 73, 2859–2867 (2021). https://doi.org/10.1007/s11837-021-04834-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04834-4

Navigation