Skip to main content

Advertisement

Log in

Transcriptional alteration of genes linked to gastritis concerning Helicobacter pylori infection status and its virulence factors

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Helicobacter pylori infection and heterogeneity in its pathogenesis could describe diversity in the expression of inflammatory genes in the gastric tissue. We aimed to investigate transcriptional alteration of genes linked to gastritis concerning the H. pylori infection status and its virulence factors.

Methods and results

Biopsy samples of 12 infected and 12 non-infected patients with H. pylori that showed moderate chronic gastritis were selected for transcriptional analysis. Genotyping of H. pylori strains was done using PCR and relative expression of inflammatory genes was compared between the infected and non-infected patients using relative quantitative real-time PCR. Positive correlations between transcriptional changes of IL8 with TNF-α and Noxo1 in the infected and TNF-α with Noxo1, MMP7, and Atp4A in the non-infected patients were detected. Six distinct genotypes of H. pylori were detected that showed no correlation with gender, ethnicity, age, endoscopic findings, and transcriptional levels of host genes. Irrespective of the characterized genotypes, our results showed overexpression of TNF-α, MMP7, Noxo1, and ATP4A in the infected and IL-8, Noxo1, and ATP4A in the non-infected patients.

Conclusions

A complexity in transcription of genes respective to the characterized H. pylori genotypes in the infected patients was detected in our study. The observed difference in co-regulation of genes linked to gastritis in the infected and non-infected patients proposed involvement of different regulatory pathways in the inflammation of the gastric tissue in the studied groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Varbanova M, Frauenschläger K, Malfertheiner P (2014) Chronic gastritis—an update. Best Pract Res Clin Gastroenterol 28(6):1031–1042. https://doi.org/10.1016/j.bpg.2014.10.005

    Article  PubMed  Google Scholar 

  2. Qadri Q, Rasool R, Gulzar G, Naqash S, Shah ZAH (2014) pylori infection, inflammation and gastric cancer. J Gastrointest Cancer 45(2):126–132. https://doi.org/10.1007/s12029-014-9583-1

    Article  CAS  PubMed  Google Scholar 

  3. Carrasco G, Corvalan AH (2013) Helicobacter pylori-induced chronic gastritis and assessing risks for gastric cancer. Gastroenterol Res Pract. https://doi.org/10.1155/2013/393015

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ricci V, Romano M, Boquet P (2011) Molecular cross-talk between Helicobacter pylori and human gastric mucosa. World J Gastroenterol 17(11):1383. https://doi.org/10.3748/wjg.v17.i11.1383

    Article  PubMed  PubMed Central  Google Scholar 

  5. Riggio MP, Lennon A, Wray D (2000) Detection of Helicobacter pylori DNA in recurrent aphthous stomatitis tissue by PCR. J Oral Pathol Med 29(10):507–513. https://doi.org/10.1034/j.1600-0714.2000.291005.x

    Article  CAS  PubMed  Google Scholar 

  6. Jia E-Z, Zhao F-J, Hao B, Zhu T-B, Wang L-S, Chen B et al (2009) Helicobacter pylori infection is associated with decreased serum levels of high density lipoprotein, but not with the severity of coronary atherosclerosis. Lipids Health Dis 8(1):1–7. https://doi.org/10.1186/1476-511X-8-59

    Article  CAS  Google Scholar 

  7. Farsak B, Yildirir A, Akyön Y, Pinar A, Öç M, Böke E et al (2000) Detection of Chlamydia pneumoniae and Helicobacter pylori DNA in human atherosclerotic plaques by PCR. J Clin Microbiol 38(12):4408–4411. https://doi.org/10.1128/JCM.38.12.4408-4411.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Correa P, Piazuelo MB (2012) The gastric precancerous cascade. J Dig Dis 13(1):2–9. https://doi.org/10.1111/j.1751-2980.2011.00550.x

    Article  PubMed  PubMed Central  Google Scholar 

  9. Isomoto H, Mizuta Y, Miyazaki M, Takeshima F, Omagari K, Murase K et al (2000) Implication of NF-κB in Helicobacter pylori-associated gastritis. Am J Gastroenterol 95(10):2768–2776. https://doi.org/10.1016/S0002-9270(00)01096-0

    Article  CAS  PubMed  Google Scholar 

  10. Liu T, Zhang L, Joo D, Sun S-C (2017) NF-κB signaling in inflammation. Signal Transduct Target Ther 2(1):1–9. https://doi.org/10.1038/sigtrans.2017.23

    Article  CAS  Google Scholar 

  11. Williams RA, Timmis J, Qwarnstrom EE (2014) Computational models of the NF-KB signalling pathway. Computation 2(4):131–158. https://doi.org/10.3390/computation2040131

    Article  Google Scholar 

  12. Hammond CE, Beeson C, Suarez G, Peek RM Jr, Backert S, Smolka AJ (2015) Helicobacter pylori virulence factors affecting gastric proton pump expression and acid secretion. Am J Physiol Gastrointest Liver Physiol 309(3):G193–G201. https://doi.org/10.1152/ajpgi.00099.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yadegar A, Mobarez AM, Alebouyeh M, Mirzaei T, Kwok T, Zali MR (2014) Clinical relevance of cagL gene and virulence genotypes with disease outcomes in a Helicobacter pylori infected population from Iran. World J Microbiol Biotechnol 30(9):2481–2490. https://doi.org/10.1007/s11274-014-1673-5

    Article  CAS  PubMed  Google Scholar 

  14. Saberi S, Douraghi M, Azadmanesh K, Shokrgozar MA, Zeraati H, Hosseini ME et al (2012) A potential association between Helicobacter pylori CagA EPIYA and multimerization motifs with cytokeratin 18 cleavage rate during early apoptosis. Helicobacter 17(5):350–357. https://doi.org/10.1111/j.1523-5378.2012.00954.x

    Article  CAS  PubMed  Google Scholar 

  15. Vaziri F, Peerayeh SN, Alebouyeh M, Mirzaei T, Yamaoka Y, Molaei M et al (2013) Diversity of Helicobacter pylori genotypes in Iranian patients with different gastroduodenal disorders. World J Gastroenterol 19(34):5685. https://doi.org/10.3748/wjg.v19.i34.5685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ta LH, Hansen LM, Sause WE, Shiva O, Millstein A, Ottemann KM et al (2012) Conserved transcriptional unit organization of the cag pathogenicity island among Helicobacter pylori strains. Front Cell Infect Microbiol 2:46. https://doi.org/10.3389/fcimb.2012.00046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wisnieski F, Calcagno DQ, Leal MF, dos Santos LC, de Oliveira GC, Chen ES et al (2013) Reference genes for quantitative RT-PCR data in gastric tissues and cell lines. World J Gastroenterol 19(41):7121. https://doi.org/10.3748/wjg.v19.i41.7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Festuccia C, Gravina GL, Giorgio C, Mancini A, Pellegrini C, Colapietro A et al (2018) UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice. Oncotarget 9(36):24347. https://doi.org/10.18632/oncotarget.25272

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chiurillo MA, Moran Y, Cañas M, Valderrama E, Granda N, Sayegh M et al (2013) Genotyping of Helicobacter pylori virulence-associated genes shows high diversity of strains infecting patients in western Venezuela. Int J Infect Dis 17(9):e750–e756. https://doi.org/10.1016/j.ijid.2013.03.004

    Article  CAS  PubMed  Google Scholar 

  20. Augusto AC, Miguel F, Mendonça S, Pedrazzoli J Jr, Gurgueira SA (2007) Oxidative stress expression status associated to Helicobacter pylori virulence in gastric diseases. Clin Biochem 40(9–10):615–622. https://doi.org/10.1016/j.clinbiochem.2007.03.014

    Article  CAS  PubMed  Google Scholar 

  21. Zabaglia LM, Ferraz MA, Pereira WN, Orcini WA, de Labio RW, Neto AC et al (2015) Lack of association among TNF-α gene expression,-308 polymorphism (G > A) and virulence markers of Helicobacter pylori. J Venom Anim Toxins Incl Trop Dis 21(1):1–7. https://doi.org/10.1186/s40409-015-0054-3

    Article  CAS  Google Scholar 

  22. Yamaoka Y, Kita M, Kodama T, Sawai N, Imanishi J (1996) Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology 110(6):1744–1752

    Article  CAS  Google Scholar 

  23. Wu Y, Zhou B (2010) TNF-α/NF-κ B/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644. https://doi.org/10.1038/sj.bjc.6605530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Siddique I, Al-Qabandi A, Al-Ali J, Alazmi W, Memon A, Mustafa AS et al (2014) Association between Helicobacter pylori genotypes and severity of chronic gastritis, peptic ulcer disease and gastric mucosal interleukin-8 levels: Evidence from a study in the Middle East. Gut Pathog 6(1):1–10. https://doi.org/10.1186/s13099-014-0041-1

    Article  CAS  Google Scholar 

  25. Audibert C, Janvier B, Grignon B, Salaüna L, Burucoa C, Lecron J-C et al (2000) Correlation between IL-8 induction, cagA status and vacA genotypes in 153 French Helicobacter pylori isolates. Res Microbiol 151(3):191–200. https://doi.org/10.1016/S0923-2508(00)00139-X

    Article  CAS  PubMed  Google Scholar 

  26. Crabtree J, Wyatt J, Trejdosiewicz L, Peichl P, Nichols P, Ramsay N et al (1994) Interleukin-8 expression in Helicobacter pylori infected, normal, and neoplastic gastroduodenal mucosa. J Clin Pathol 47(1):61–66. https://doi.org/10.1136/jcp.47.1.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moss S, Legon S, Davies J, Calam J (1994) Cytokine gene expression in Helicobacter pylori associated antral gastritis. Gut 35(11):1567–1570. https://doi.org/10.1136/gut.35.11.1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sharma SA, Tummuru MK, Blaser MJ, Kerr LD (1998) Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-κB in gastric epithelial cells. J Immunol 160(5):2401–2407

    CAS  PubMed  Google Scholar 

  29. Bartchewsky W Jr, Martini MR, Masiero M, Squassoni AC, Alvarez MC, Ladeira MS et al (2009) Effect of Helicobacter pylori infection on IL-8, IL-1β and COX-2 expression in patients with chronic gastritis and gastric cancer. Scand J Gastroenterol 44(2):153–161. https://doi.org/10.1080/00365520802530853

    Article  CAS  PubMed  Google Scholar 

  30. Outlioua A, Badre W, Desterke C, Echarki Z, El Hammani N, Rabhi M et al (2020) Gastric IL-1β, IL-8, and IL-17A expression in Moroccan patients infected with Helicobacter pylori may be a predictive signature of severe pathological stages. Cytokine 126:154893. https://doi.org/10.1016/j.cyto.2019.154893

    Article  CAS  PubMed  Google Scholar 

  31. Bornschein J, Kandulski A, Selgrad M, Malfertheiner P (2010) From gastric inflammation to gastric cancer. Dig Dis 28(4–5):609–614. https://doi.org/10.1159/000320061

    Article  PubMed  Google Scholar 

  32. Lu L, Ma G, Liu X, Sun R, Wang Q, Liu M et al (2017) Correlation between GDF15, MMP7 and gastric cancer and its prognosis. Eur Rev Med Pharmacol Sci 21(3):535–541

    CAS  PubMed  Google Scholar 

  33. Gontar Siregar SH, Sitepu R (2016) Serum IL-10, MMP-7, MMP-9 levels in Helicobacter pylori infection and correlation with degree of gastritis. Open Access Maced J Med Sci 4(3):359. https://doi.org/10.3889/oamjms.2016.099

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 3(12):a005058. https://doi.org/10.1101/cshperspect.a005058

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wroblewski LE, Noble P-J, Pagliocca A, Pritchard DM, Hart CA, Campbell F et al (2003) Stimulation of MMP-7 (matrilysin) by Helicobacter pylori in human gastric epithelial cells: role in epithelial cell migration. J Cell Sci 116(14):3017–3026. https://doi.org/10.1242/jcs.00518

    Article  CAS  PubMed  Google Scholar 

  36. Sadeghiani M, Bagheri N, Shahi H, Reiisi S, Rahimian G, Rashidi R et al (2017) cag Pathogenicity island-dependent upregulation of matrix metalloproteinase-7 in infected patients with Helicobacter pylori. J Immunoassay Immunochem 38(6):595–607. https://doi.org/10.1080/15321819.2017.1351372

    Article  CAS  PubMed  Google Scholar 

  37. Crawford HC, Krishna US, Israel DA, Matrisian LM, Washington MK, Peek RM Jr (2003) Helicobacter pylori strain-selective induction of matrix metalloproteinase-7 in vitro and within gastric mucosa. Gastroenterology 125(4):1125–1136. https://doi.org/10.1016/S0016-5085(03)01206-X

    Article  CAS  PubMed  Google Scholar 

  38. Kim HJ, Kim N, Park JH, Choi S, Shin CM, Lee OJ (2020) Helicobacter pylori eradication induced constant decrease in interleukin-1B expression over more than 5 years in patients with gastric cancer and dysplasia. Gut Liver 14(6):735. https://doi.org/10.5009/gnl19312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao X, Smolka AJ (2019) Gastric parietal cell physiology and Helicobacter pylori–induced disease. Gastroenterology 156(8):2158–2173. https://doi.org/10.1053/j.gastro.2019.02.036

    Article  PubMed  Google Scholar 

  40. Saha A, Backert S, Hammond CE, Gooz M, Smolka AJ (2010) Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H, K-ATPase α subunit. Gastroenterology 139(1):239–248. https://doi.org/10.1053/j.gastro.2010.03.036

    Article  CAS  PubMed  Google Scholar 

  41. Chang W-L, Yeh Y-C, Sheu B-S (2018) The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 25(1):1–9. https://doi.org/10.1186/s12929-018-0466-9

    Article  CAS  Google Scholar 

  42. Saha A, Hammond CE, Trojanowska M (2008) Helicobacter pylori-induced H, K-ATPase α-subunit gene repression is mediated by NF-κB p50 homodimer promoter binding. Am J Physiol Gastrointest Liver Physiol 294(3):G795–G807. https://doi.org/10.1152/ajpgi.00431.2007

    Article  CAS  PubMed  Google Scholar 

  43. Oshima H, Ishikawa T, Yoshida G, Naoi K, Maeda Y, Naka K et al (2014) TNF-α/TNFR1 signaling promotes gastric tumorigenesis through induction of Noxo1 and Gna14 in tumor cells. Oncogene 33(29):3820–3829. https://doi.org/10.1038/onc.2013.356

    Article  CAS  PubMed  Google Scholar 

  44. Echizen K, Horiuchi K, Aoki Y, Yamada Y, Minamoto T, Oshima H et al (2019) NF-κB-induced NOX1 activation promotes gastric tumorigenesis through the expansion of SOX2-positive epithelial cells. Oncogene 38(22):4250–4263. https://doi.org/10.1038/s41388-019-0702-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lou X, Zhu H, Ning L, Li C, Li S, Du H et al (2019) EZH2 regulates intestinal inflammation and necroptosis through the JNK signaling pathway in intestinal epithelial cells. Dig Dis Sci 64(12):3518–3527. https://doi.org/10.1007/s10620-019-05705-4

    Article  CAS  PubMed  Google Scholar 

  46. Ohki R, Yamamoto K, Mano H, Lee RT, Ikeda U, Shimada K (2002) Identification of mechanically induced genes in human monocytic cells by DNA microarrays. J Hypertens 20(4):685–691

    Article  CAS  Google Scholar 

  47. Binato R, Santos EC, Boroni M, Demachki S, Assumpção P, Abdelhay E (2018) A common molecular signature of intestinal-type gastric carcinoma indicates processes related to gastric carcinogenesis. Oncotarget 9(7):7359. https://doi.org/10.18632/oncotarget.23670

    Article  PubMed  Google Scholar 

  48. Rubach M, Lang R, Hofmann T, Somoza V (2008) Time-dependent component-specific regulation of gastric acid secretion-related proteins by roasted coffee constituents. Ann N Y Acad Sci 1126(1):310–314. https://doi.org/10.1196/annals.1433.061

    Article  CAS  PubMed  Google Scholar 

  49. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3(7):1–12. https://doi.org/10.1186/gb-2002-3-7-research0034

    Article  Google Scholar 

  50. Steinau M, Rajeevan MS, Unger ER (2006) DNA and RNA references for qRT-PCR assays in exfoliated cervical cells. J Mol Diagn 8(1):113–118. https://doi.org/10.2353/jmoldx.2006.050088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Abdollah Karimi, Prof. Fatemeh Fallah and all colleagues of Pediatric Infections Research Center (PIRC), Research Institute for Children’s Health, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran for their cooperation in this study. The authors of this study also thank the kindly support of gastroenterology and pathology units of Firoozgar hospital, Iran University of Medical Sciences, Tehran, Iran.

Funding

This study was funded by a Ph.D. grant from the Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors fulfilled the authorship criteria and all authors read and approved the final version of the manuscript. Seyedeh Zohre Mirbagheri, do main part of the experiments and wrote initial draft of the manuscript; Ronak Bakhtiari co-supervised the study and provide the fund; Masoud Alebouyeh designed the study, supervised the research, reviewed and revised the manuscript; Hashem Fakhre Yaseri, do endoscopy and provide the gastric biopsy samples and pathology reports; Abbas Rahimi Foroushani and Seyyed Saeed Eshraghi were counselors of this study.

Corresponding authors

Correspondence to Ronak Bakhtiari or Masoud Alebouyeh.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

This study was approved by the ethical committee of the Research Center in Tehran University of Medical Science (accepted Number, IR.TUMS.SPH.REC.1398.167 1398/7/3) and an informed consent form was obtained from all the patients.

Informed consent

The authors included in the study consent to this manuscript to participate and for publication.

Consent for publication

The authors declare that they consent for publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirbagheri, S.Z., Bakhtiari, R., Fakhre Yaseri, H. et al. Transcriptional alteration of genes linked to gastritis concerning Helicobacter pylori infection status and its virulence factors. Mol Biol Rep 48, 6481–6489 (2021). https://doi.org/10.1007/s11033-021-06654-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06654-w

Keywords

Navigation