Skip to main content
Log in

The Response Regulator MacR and its Potential in Improvement of Antibiotic Production in Streptomyces coelicolor

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

We previously reported that the two-component system MacRS regulates morphogenesis and production of the blue-pigmented antibiotic actinorhodin (ACT) in Streptomyces coelicolor. In this study, the role of MacRS was further extended to include control of the production of the red-pigmented antibiotic undecylprodigiosin (RED) and the calcium-dependent antibiotic (CDA), and control of other important cellular activities. Our data indicated that disruption of the MacRS TCS reduced production not only of ACT but also of RED and CDA. RNA-Seq analysis revealed that genes involved in both secondary metabolism and primary metabolism are differentially expressed in the MacRS deletion mutant ΔmacRS. Moreover, we found that genes of the Zur regulon are also markedly downregulated in ΔmacRS, suggesting a role for macRS in zinc homeostasis. In addition to previously identified MacR sites with strong matches to the MacR consensus recognition sequence, a genome-wide search revealed over one hundred less-stringent matches, including potential sites upstream of absR1, crgA, and smeA. Electrophoretic mobility shift assays demonstrated that MacR binds some of these sites in vitro. Although there is no strong MacR site upstream of the ACT regulatory gene actII-orf4 (sco5085), we showed that an engineered MacR site enhanced ACT production, providing an approach for modulating production of useful compounds. Altogether, our work suggests an important role for MacRS in a range of cellular activities in Streptomyces and its potential application in strain engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chater K, Dyson P (2011) Streptomyces: molecular biology and biotechnology. Caister Academic Press, Norfolk, pp 43–86

    Google Scholar 

  2. Hopwood DA (ed) (2007) Streptomyces in nature and medicine. Oxford University Press, Oxford

    Google Scholar 

  3. Bentley SD, Chater KF, Cerdeno-Tarraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  Google Scholar 

  4. Hutchings MI, Hoskisson PA, Chandra G, Buttner MJ (2004) Sensing and responding to diverse extracellular signals? Analysis of the sensor kinases and response regulators of Streptomyces coelicolor A3(2). Microbiology 150:2795–2806

    Article  CAS  Google Scholar 

  5. Martin JF, Liras P (2020) The balance metabolism safety net: integration of stress signals by interacting transcriptional factors in Streptomyces and related Actinobacteria. Front Microbiol 10:3120

    Article  Google Scholar 

  6. Hakenbeck R, Stock JB (1996) Analysis of two-component signal transduction systems involved in transcriptional regulation. Methods Enzymol 273:281–300

    Article  CAS  Google Scholar 

  7. Sola-Landa A, Moura RS, Martin JF (2003) The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA 100:6133–6138

    Article  CAS  Google Scholar 

  8. Fink D, Weissschuh N, Reuther J, Wohlleben W, Engels A (2002) Two transcriptional regulators GlnR and GlnRII are involved in regulation of nitrogen metabolism in Streptomyces coelicolor A3(2). Mol Microbiol 46:331–347

    Article  CAS  Google Scholar 

  9. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    Article  CAS  Google Scholar 

  10. Zhu Y, Zhang P, Zhang J, Xu W, Wang X, Wu L, Sheng D, Ma W, Cao G, Chen XL et al (2019) The developmental regulator MtrA binds GlnR boxes and represses nitrogen metabolism genes in Streptomyces coelicolor. Mol Microbiol 112:29–46

    Article  CAS  Google Scholar 

  11. He JM, Zhu H, Zheng GS, Liu PP, Wang J, Zhao GP, Zhu GQ, Jiang WH, Lu YH (2016) Direct involvement of the master nitrogen metabolism regulator GlnR in antibiotic biosynthesis in Streptomyces. J Biol Chem 291:26443–26454

    Article  CAS  Google Scholar 

  12. Zhang P, Wu L, Zhu Y, Liu M, Wang Y, Cao G, Chen XL, Tao M, Pang X (2017) Deletion of MtrA inhibits cellular development of Streptomyces coelicolor and alters expression of developmental regulatory genes. Front Microbiol 8:2013

    Article  Google Scholar 

  13. Som NF, Heine D, Holmes NA, Munnoch JT, Chandra G, Seipke RF, Hoskisson PA, Wilkinson B, Hutchings MI (2017) The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442. Front Microbiol 8:1145

    Article  Google Scholar 

  14. Som NF, Heine D, Holmes N, Knowles F, Chandra G, Seipke RF, Hoskisson PA, Wilkinson B, Hutchings MI (2017) The MtrAB two-component system controls antibiotic production in Streptomyces coelicolor A3(2). Microbiology 163:1415–1419

    Article  CAS  Google Scholar 

  15. Zhu Y, Zhang P, Zhang J, Wang J, Lu Y, Pang X (2020) Impact on multiple antibiotic pathways reveals MtrA as a master regulator of antibiotic production in Streptomyces spp. and Potentially in Other Actinobacteria. Appl Environ Microbiol 86:e01201

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shu D, Chen L, Wang W, Yu Z, Ren C, Zhang W, Yang S, Lu Y, Jiang W (2009) afsQ1-Q2-sigQ is a pleiotropic but conditionally required signal transduction system for both secondary metabolism and morphological development in Streptomyces coelicolor. Appl Microbiol Biotechnol 81:1149–1160

    Article  CAS  Google Scholar 

  17. Wang R, Mast Y, Wang J, Zhang W, Zhao G, Wohlleben W, Lu Y, Jiang W (2013) Identification of two-component system AfsQ1/Q2 regulon and its cross-regulation with GlnR in Streptomyces coelicolor. Mol Microbiol 87:30–48

    Article  CAS  Google Scholar 

  18. Chen S, Zheng G, Zhu H, He H, Chen L, Zhang W, Jiang W, Lu Y (2016) Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor. FEMS Microbiol Lett 363:fnw160

    Article  Google Scholar 

  19. Yu Z, Zhu H, Dang F, Zhang W, Qin Z, Yang S, Tan H, Lu Y, Jiang W (2012) Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor. Mol Microbiol 85:535–556

    Article  CAS  Google Scholar 

  20. Yu Z, Zhu H, Zheng G, Jiang W, Lu Y (2014) A genome-wide transcriptomic analysis reveals diverse roles of the two-component system DraR-K in the physiological and morphological differentiation of Streptomyces coelicolor. Appl Microbiol Biotechnol 98:9351–9363

    Article  CAS  Google Scholar 

  21. Lu Y, He J, Zhu H, Yu Z, Wang R, Chen Y, Dang F, Zhang W, Yang S, Jiang W (2011) An orphan histidine kinase, OhkA, regulates both secondary metabolism and morphological differentiation in Streptomyces coelicolor. J Bacteriol 193:3020–3032

    Article  CAS  Google Scholar 

  22. Liu M, Zhang P, Zhu Y, Lu T, Wang Y, Cao G, Shi M, Chen XL, Tao M, Pang X (2019) Novel two-component system MacRS is a pleiotropic regulator that controls multiple morphogenic membrane protein genes in Streptomyces coelicolor. Appl Environ Microbiol 85:e02178

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ou X, Zhang B, Zhang L, Zhao G, Ding X (2009) Characterization of rrdA, a TetR family protein gene involved in the regulation of secondary metabolism in Streptomyces coelicolor. Appl Environ Microbiol 75:2158–2165

    Article  CAS  Google Scholar 

  24. Gust B, Challis GL, Fowler K, Kieser T, Chater KF (2003) PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 100:1541–1546

    Article  CAS  Google Scholar 

  25. Gregory MA, Till R, Smith MC (2003) Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol 185:5320–5323

    Article  CAS  Google Scholar 

  26. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (eds) (2000) Practical Streptomyces genetics, 2nd edn. John Innes Foundation, Norwich

    Google Scholar 

  27. Lakey JH, Lea EJ, Rudd BA, Wright HM, Hopwood DA (1983) A new channel-forming antibiotic from Streptomyces coelicolor A3(2) which requires calcium for its activity. J Gen Microbiol 129:3565–3573

    CAS  PubMed  Google Scholar 

  28. Ryding NJ, Anderson TB, Champness WC (2002) Regulation of the Streptomyces coelicolor calcium-dependent antibiotic by absA, encoding a cluster-linked two-component system. J Bacteriol 184:794–805

    Article  CAS  Google Scholar 

  29. Anderson TB, Brian P, Champness WC (2001) Genetic and transcriptional analysis of absA, an antibiotic gene cluster-linked two-component system that regulates multiple antibiotics in Streptomyces coelicolor. Mol Microbiol 39:553–566

    Article  CAS  Google Scholar 

  30. Patzer SI, Hantke K (1998) The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 28:1199–1210

    Article  CAS  Google Scholar 

  31. Choi SH, Lee KL, Shin JH, Cho YB, Cha SS, Roe JH (2017) Zinc-dependent regulation of zinc import and export genes by Zur. Nat Commun 8:15812

    Article  Google Scholar 

  32. Shin JH, Oh SY, Kim SJ, Roe JH (2007) The zinc-responsive regulator Zur controls a zinc uptake system and some ribosomal proteins in Streptomyces coelicolor A3(2). J Bacteriol 189:4070–4077

    Article  CAS  Google Scholar 

  33. Owen GA, Pascoe B, Kallifidas D, Paget MS (2007) Zinc-responsive regulation of alternative ribosomal protein genes in Streptomyces coelicolor involves zur and sigmaR. J Bacteriol 189:4078–4086

    Article  CAS  Google Scholar 

  34. Kallifidas D, Pascoe B, Owen GA, Strain-Damerell CM, Hong HJ, Paget MS (2010) The zinc-responsive regulator Zur controls expression of the coelibactin gene cluster in Streptomyces coelicolor. J Bacteriol 192:608–611

    Article  CAS  Google Scholar 

  35. Novichkov PS, Rodionov DA, Stavrovskaya ED, Novichkova ES, Kazakov AE, Gelfand MS, Arkin AP, Mironov AA, Dubchak I (2010) RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach. Nucleic Acids Res 38:W299-307

    Article  CAS  Google Scholar 

  36. Ausmees N, Wahlstedt H, Bagchi S, Elliot MA, Buttner MJ, Flardh K (2007) SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa. Mol Microbiol 65:1458–1473

    Article  CAS  Google Scholar 

  37. Adams CW, Fornwald JA, Schmidt FJ, Rosenberg M, Brawner ME (1988) Gene organization and structure of the Streptomyces lividans gal operon. J Bacteriol 170:203–212

    Article  CAS  Google Scholar 

  38. Malm S, Tiffert Y, Micklinghoff J, Schultze S, Joost I, Weber I, Horst S, Ackermann B, Schmidt M, Wohlleben W et al (2009) The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155:1332–1339

    Article  CAS  Google Scholar 

  39. Rico S, Santamaria RI, Yepes A, Rodriguez H, Laing E, Bucca G, Smith CP, Diaz M (2014) Deciphering the regulon of Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production. Appl Environ Microbiol 80:2417–2428

    Article  Google Scholar 

  40. Hesketh A, Kock H, Mootien S, Bibb M (2009) The role of absC, a novel regulatory gene for secondary metabolism, in zinc-dependent antibiotic production in Streptomyces coelicolor A3(2). Mol Microbiol 74:1427–1444

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Foundation of Shandong Province (Grant No. ZR2019MC062 to XP) and from the Open Funding Project of The State Key Laboratory of Microbial Metabolism (MMLKF21-02 to XP).

Author information

Authors and Affiliations

Authors

Contributions

XP conceived and supervised the study. ML, WX, and YZ performed the experiments and collected data. XP and XC analysed the data. XP wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Xiqing Cui or Xiuhua Pang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 750 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Xu, W., Zhu, Y. et al. The Response Regulator MacR and its Potential in Improvement of Antibiotic Production in Streptomyces coelicolor. Curr Microbiol 78, 3696–3707 (2021). https://doi.org/10.1007/s00284-021-02633-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-021-02633-3

Navigation