Skip to main content
Log in

Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In the current study, lake sediment, a heterogeneous and complex organic matter, utilized as a catalyst upon acid treatment for efficient hydrogen generation from sodium borohydride. In order to synthesise the catalyst that bears the best catalytic activity, ANOVA, cubic stepwise linear regression and artificial neural network optimization techniques were applied to determine the optimal level of treatment parameters. The results suggest that only Taguchi orthogonal arrays method was able to accurately reflect the overall surface of objective variable. Among the 16 catalyst samples Exp(15) showed the superior catalytic activity followed by Exp(13), Exp(12), Exp(14) and Exp(7). The minimum reaction completion time for Exp(15) corresponding to maximum hydrogen production rate of 3247.15 mL/min/gcat was 2.25 min. A detailed characterization of the final product was carried out by using a Fourier transform infrared spectra (FTIR—Perkin Elmer), an X-ray diffractometer (Bruker D8 Advance XRD), a scanning electron microscopy and energy dispersive X-ray spectroscopy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. Midilli A, Dincer I (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. Int J Hydrogen Energy 33(16):4209–4222

    Article  CAS  Google Scholar 

  2. Barbir F, Veziroǧlu T, Plass H Jr. (1990) Environmental damage due to fossil fuels use. Int J Hydrogen Energy 15(10):739–749

    Article  CAS  Google Scholar 

  3. Panwar N, Kaushik S, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524

    Article  Google Scholar 

  4. Bekirogullari M (2019) Catalytic activities of non-noble metal catalysts (CuB, FeB, and NiB) with C. Vulgaris microalgal strain support modified by using phosphoric acid for hydrogen generation from sodium borohydride methanolysis. Int J Hydrogen Energy 44(29):14981–14991

    Article  CAS  Google Scholar 

  5. Jain I (2009) Hydrogen the fuel for 21st century. Int J Hydrogen Energy 34(17):7368–7378

    Article  CAS  Google Scholar 

  6. Züttel A et al (1923) Hydrogen: the future energy carrier. Philos Trans Royal Soc A 2010(368):3329–3342

    Google Scholar 

  7. Biniwale RB et al (2008) Chemical hydrides: a solution to high capacity hydrogen storage and supply. Int J Hydrogen Energy 33(1):360–365

    Article  CAS  Google Scholar 

  8. Mustafa K, Bekirogullari M (2019) Investigation of hydrogen production from sodium borohydride methanolysis in the presence of Al2O3/spirulina platensis supported Co catalyst. Eur J Lipid Sci Technol 16:69–76

    Google Scholar 

  9. Özkan G, Akkuş MS, Özkan G (2019) The effects of operating conditions on hydrogen production from sodium borohydride using Box-Wilson optimization technique. Int J Hydrogen Energy 44(20):9811–9816

    Article  Google Scholar 

  10. Loghmani MH, Shojaei AF, Khakzad M (2017) Hydrogen generation as a clean energy through hydrolysis of sodium borohydride over Cu–Fe–B nano powders: effect of polymers and surfactants. Energy 126:830–840

    Article  CAS  Google Scholar 

  11. Kim P et al (2006) NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources 160(2):987–990

    Article  CAS  Google Scholar 

  12. Deraedt C et al (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. ChemComm 50(91):14194–14196

    CAS  Google Scholar 

  13. Kaya M (2019) NiB loaded acetic acid treated microalgae strain (Spirulina platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy Source Part A 41(20):2549–2560

    Article  CAS  Google Scholar 

  14. Saka C, Kaya M, Bekiroğullari M (2020) Spirulina microalgal strain as efficient a metal-free catalyst to generate hydrogen via methanolysis of sodium borohydride. Int J Energy Res 44(1):402–410

    Article  CAS  Google Scholar 

  15. Xu D et al (2018) Efficient catalytic properties of SO42−/MxOy (M = Cu, Co, Fe) catalysts for hydrogen generation by methanolysis of sodium borohydride. Int J Hydrogen Energy 43(13):6594–6602

    Article  CAS  Google Scholar 

  16. Lo C-TF, Karan K, Davis B (2009) Kinetic assessment of catalysts for the methanolysis of sodium borohydride for hydrogen generation. Ind Eng Chem Res 48(11):5177–5184

    Article  CAS  Google Scholar 

  17. Saka C, Kaya M, Bekiroğullari M (2020) Spirulina Platensis microalgae strain modified with phosphoric acid as a novel support material for Co–B catalysts: its application to hydrogen production. Int J Hydrogen Energy 45(4):2872–2883

    Article  CAS  Google Scholar 

  18. Saka C, Kaya M, Bekiroğullari M (2020) Chlorella vulgaris microalgae strain modified with zinc chloride as a new support material for hydrogen production from NaBH4 methanolysis using CuB, NiB, and FeB metal catalysts. Int J Hydrogen Energy 45(3):1959–1968

    Article  CAS  Google Scholar 

  19. Bekirogullari M (2020) Hydrogen production from sodium borohydride by ZnCl2 treated defatted spent coffee ground catalyst. Int J Hydrogen Energy 45(16):9733–9743

    Article  CAS  Google Scholar 

  20. El-Moslamy SH et al (2017) Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA. F4 and its application against phytopathogens. Sci Rep 7(1):1–22

    Article  Google Scholar 

  21. Alam H, Moghaddam A, Omidkhah M (2009) The influence of process parameters on desulfurization of Mezino coal by HNO3/HCl leaching. Fuel Process Technol 90(1):1–7

    Article  CAS  Google Scholar 

  22. Das SK, Sahoo P (2011) Tribological characteristics of electroless Ni–B coating and optimization of coating parameters using Taguchi based grey relational analysis. Mater Des 32(4):2228–2238

    Article  CAS  Google Scholar 

  23. Singh JP, Kumar S, Mohapatra S (2018) Chemical treatment of low-grade coal using Taguchi approach. Part Sci Technol 38:73–80

    Article  Google Scholar 

  24. Sağır K, Elçiçek H, Özdemir OK (2021) Optimization of catalyst preparation conditions for hydrogen generation in the presence of Co–B using Taguchi method. Int J Hydrogen Energy 46(7):5689–5698

    Article  Google Scholar 

  25. Durrleman S, Simon R (1989) Flexible regression models with cubic splines. Stat Med 8(5):551–561

    Article  CAS  Google Scholar 

  26. Desai KM et al (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273

    Article  CAS  Google Scholar 

  27. Dauvalter V et al (2011) Chemical composition of lake sediments along a pollution gradient in a Subarctic watercourse. J Environ Sci Health A 46(9):1020–1033

    Article  CAS  Google Scholar 

  28. Nriagu J, Dell C (1974) Diagenetic formation of iron phosphates in recent lake sediments. Am Mineral 59(9–10):934–946

    CAS  Google Scholar 

  29. LeNail A (2019) Nn-svg: publication-ready neural network architecture schematics. J Open Source Softw 4(33):747

    Article  Google Scholar 

  30. Gnanasaravanan S, Rajkumar P (2013) Characterization of minerals in natural and manufactured sand in Cauvery River belt, Tamilnadu, India. Infrared Phys Technol 58:21–31

    Article  CAS  Google Scholar 

  31. Dupuis T et al (1984) Etude par spectrographie Infrarouge d’un encroutement calcaire sous galet. Mise en évidence et modélisation expérimentale d’une suite minérale évolutive à partir de carbonate de calcium amorphe. Clay Miner 19(4):605–614

    Article  CAS  Google Scholar 

  32. Laves F (1952) Phase relations of the alkali feldspars: I. Introductory remarks. J Geol 60(5):436–450

    Article  CAS  Google Scholar 

  33. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 64(2):273–278

    Article  Google Scholar 

  34. Gao Y, Han Y, Li W (2018) Flotation behavior of diatomite and albite using dodecylamine as a collector. Minerals 8(9):371

    Article  Google Scholar 

  35. Milinovic J et al (2020) XRD identification of ore minerals during cruises: refinement of extraction procedure with sodium acetate buffer. Minerals 10(2):160

    Article  CAS  Google Scholar 

  36. Sánchez-Soto PJ et al (2021) Mining wastes of an albite deposit as raw materials for vitrified mullite ceramics. Minerals 11(3):232

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesut Bekirogullari.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekirogullari, M., Abut, S., Duman, F. et al. Lake sediment based catalyst for hydrogen generation via methanolysis of sodium borohydride: an optimization study with artificial neural network modelling. Reac Kinet Mech Cat 134, 57–74 (2021). https://doi.org/10.1007/s11144-021-02057-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-021-02057-x

Keywords

Navigation