Skip to main content

Advertisement

Log in

New Hybrid Architecture for Energy Efficient and Low Complex Massive MIMO System

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Massive MIMO is an important framework of 5G and the Internet of Things (IoT). Signals radiated from a 5G antenna share the complex architecture. A system is therefore needed that can minimize complexity and provides good spectral efficiency and throughput. This is achieved by reducing RF chains which is an important constraint in an energy-efficient 5G system. In this paper, a new semi-orthogonal-based scheme is proposed to formulate SINR which maximizes throughput when RF chains are combined without increasing computational complexity, and also the focus is laid on the improvement of the sum data rate of the system. More importantly, the optimization algorithm has been implemented and used to model the massive MIMO as a tool for an energy-efficient system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chataut, R.; Akl, R.: Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors 20(10), 2753 (2020)

    Article  Google Scholar 

  2. Mchangama, A.; Ayadi, J.; Jiménez, V.P.G.; Consoli, A.: MmWave massive MIMO small cells for 5G and beyond mobile networks: an overview. In: 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), pp. 1–). IEEE (2020)

  3. Ali, E.; Ismail, M.; Nordin, R.; Abdulah, N.F.: Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front. Inf. Technol. Electron. Eng. 18(6), 753–772 (2017)

    Article  Google Scholar 

  4. Fan, W.; Carton, I.; Kyosti, P.; Karstensen, A.; Jamsa, T.; Gustafsson, M.; Pedersen, G.F.: A step toward 5G in 2020: low-cost OTA performance evaluation of massive MIMO base stations. IEEE Antennas Propag. Mag. 59(1), 38–47 (2016)

    Article  Google Scholar 

  5. Lee, B.J.; Ju, S.L.; Kim, N.I.; Kim, K.S.: Enhanced transmit-antenna selection schemes for multiuser massive MIMO systems. Wirel. Commun. Mobile Comput. (2017)

  6. Mustafa, F.; Sidiq, S.; Sheikh, J.A.; Bhat, G.M.: Various technologies used in 5G communication and the issues related to it. In: 2019 International Conference on Power Electronics, Control and Automation (ICPECA), pp. 1–4. IEEE (2019). https://doi.org/10.1109/ICPECA47973.2019.89756318

  7. Sofi, I.B.; Gupta, A.: A survey on energy efficient 5G green network with a planned multi-tier architecture. J. Netw. Comput. Appl. 118, 1–28 (2018)

    Article  Google Scholar 

  8. Morgado, A.; Huq, K.M.S.; Mumtaz, S.; Rodriguez, J.: A survey of 5G technologies: regulatory, standardization and industrial perspectives. Digit. Commun. Netw. 4(2), 87–97 (2018)

    Article  Google Scholar 

  9. Bengtsson, M.; Ottersten, B.: Optimal and suboptimal transmit beamforming. In: Godara, L.C. (Ed.) Handbook of Antennas in Wireless Communications. CRC Press, Boca Raton (2001)

    Google Scholar 

  10. Jiang, T.; Mao, S.; Zhang, Z.; Chen, D.: Technologies. Digit Commun. Netw. 2(4), 159–161 (2016)

    Article  Google Scholar 

  11. Giordani, M.; Polese, M.; Roy, A.; Castor, D.; Zorzi, M.: A tutorial on beam management for 3GPP NR at mmWave frequencies. IEEE Commun. Surv. Tutor. 21(1), 173–196 (2018)

    Article  Google Scholar 

  12. García-Morales, J.; Femenias, G.; Riera-Palou, F.: Energy-efficient access-point sleep-mode techniques for cell-free mmWave massive MIMO networks with non-uniform spatial traffic density. IEEE Access 8, 137587–137605 (2020)

    Article  Google Scholar 

  13. Zhao, R.; Woodford, T.; Wei, T.; Qian, K.; Zhang, X.: M-cube: a millimeter-wave massive MIMO software radio. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, pp. 1–14 (2020)

  14. Zhu, L.; Zhang, J.; Xiao, Z.; Cao, X.; Wu, D.O.; Xia, X.G.: Millimeter-wave NOMA with user grouping, power allocation and hybrid beamforming. IEEE Trans. Wirel. Commun. 18(11), 5065–5079 (2019). https://doi.org/10.1109/TWC.2019.2932070

    Article  Google Scholar 

  15. Goswami, M.; Kwon, H.M.: Submillimeter wave communication versus millimeter wave communication. Digit. Commun. Netw. 6(1), 64–74 (2020)

    Article  Google Scholar 

  16. Albreem, M.A.: 5G wireless communication systems: vision and challenges. In 2015 International Conference on Computer, Communications, and Control Technology (I4CT), pp. 493–497. IEEE (2015). https://doi.org/10.1109/I4CT.2015.7219627

  17. El Ayach, O.; Rajagopal, S.; Abu-Surra, S.; Pi, Z.; Heath, R.W.: Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans. Wirel. Commun. 13(3), 1499–1513 (2014). https://doi.org/10.1109/TWC.2014.011714.130846

    Article  Google Scholar 

  18. Zhu, D.; Li, B.; Liang, P.: A novel hybrid beamforming algorithm with unified analog beamforming by subspace construction based on partial CSI for massive MIMO-OFDM systems. IEEE Trans. Commun. 65(2), 594–607 (2016). https://doi.org/10.1109/TCOMM.2016.2625794

    Article  Google Scholar 

  19. Demirtaş, M.; Saggında, Ç.; Soysal, A.: Energy and spectral efficiency for heterogeneous cellular networks with stochastic deployment. In: 2017 25th Signal Processing and Communications Applications Conference (SIU), pp. 1–4. IEEE (2017). https://doi.org/10.1109/SIU.2017.7960421

  20. Larsson, E.G.; Edfors, O.; Tufvesson, F.; Marzetta, T.L.: Massive MIMO for next generation wireless systems. IEEE Commun. Mag. 52(2), 186–195 (2014). https://doi.org/10.1109/MCOM.2014.6736761

    Article  Google Scholar 

  21. Sheikh, J.A.; Mustafa, F.; Sidiq, S.; Parah, S.A.; Bhat, G.M.: A new optimization technique in massive MIMO and LSAS using Hybrid architecture and channel estimation algorithm for 5G networks. Wirel. Pers. Commun., 1–15 (2021)

  22. Kim, M.; Lee, J.; Lee, J.: Hybrid beamforming for multi-user transmission in millimeter wave communications. In: 2017 International Conference on Information and Communication Technology Convergence (ICTC), pp. 1260–1262. IEEE (2017). https://doi.org/10.1109/ICTC.2017.8190915

  23. Ahmed, A.H.; Al-Heety, A.T.; Al-Khateeb, B.; Mohammed, A H.: Energy efficiency in 5G massive MIMO for mobile wireless network. In: 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), pp. 1–6. IEEE (2020)

  24. Khodamoradi, V.; Sali, A.; Messadi, O.; Salah, A.A.; Al-Wani, M.M.; Ali, B.M.; Abdullah, R.S.A.R.: Optimal energy efficiency based power adaptation for downlink multi-cell massive MIMO systems. IEEE Access 8, 203237–203251 (2020)

    Article  Google Scholar 

  25. Sofi, I.B.; Gupta, A.; Jha, R.K.: Power and energy optimization with reduced complexity in different deployment scenarios of massive MIMO network. Int. J. Commun. Syst. 32(6), e3907 (2019)

    Article  Google Scholar 

  26. Sahu, A.; Panchal, M.; Jain, R.: Energy-efficient optimum design for massive MIMO. In: Advanced Computational and Communication Paradigms, pp. 378–386. Springer, Singapore (2018)

  27. Salem, A.A.; El-Rabaie, S.; Shokair, M.: A proposed efficient hybrid precoding algorithm for millimeter wave massive MIMO 5G networks. Wirel. Pers. Commun. 112(1), 149–167 (2020)

    Article  Google Scholar 

  28. Ragunathan, S.; Perumal, D.: Enhancement of energy efficiency in massive MIMO network using superimposed pilots. J. Ambient Intell. Human. Comput., 1–8 (2020)

  29. Salh, A.; Audah, L.; Shah, N.S.M.; Hamzah, S.A.: Energy-efficient power allocation with hybrid beamforming for millimetre-wave 5G massive MIMO system. Wirel. Pers. Commun. 115(1), 43–59 (2020). https://doi.org/10.1007/s11277-020-07559-w

    Article  Google Scholar 

  30. Venugopal, K.; Alkhateeb, A.; Prelcic, N.G.; Heath, R.W.: Channel estimation for hybrid architecture-based wideband millimeter wave systems. IEEE J. Sel. Areas Commun. 35(9), 1996–2009 (2017). https://doi.org/10.1109/JSAC.2017.2720856

    Article  Google Scholar 

  31. Elbir, A.M.; Mishra, K.V.: Joint antenna selection and hybrid beamformer design using unquantized and quantized deep learning networks. IEEE Trans. Wireless Commun. 19(3), 1677–1688 (2019)

    Article  Google Scholar 

  32. Mezghani, A.; Nossek, J.A.: Power efficiency in communication systems from a circuit perspective. In 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 1896–1899. IEEE (2011). https://doi.org/10.1109/ISCAS.2011.5937958

  33. Lee, J.; Gil, G.T.; Lee, Y.H.: Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans. Commun. 64(6), 2370–2386 (2016). https://doi.org/10.1109/TCOMM.2016.2557791

    Article  Google Scholar 

  34. Ericsson Mobility Report (November 2020). Retrieved February 2021, from https://www.ericsson.com/en/mobility-report

  35. Björnson, E.; Hoydis, J.; Kountouris, M.; Debbah, M.: Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits. IEEE Trans. Inf. Theory 60(11), 7112–7139 (2014)

    Article  MathSciNet  Google Scholar 

  36. Alkhateeb, A.; Nam, Y.H.; Zhang, J.; Heath, R.W.: Massive MIMO combining with switches. IEEE Wirel. Commun. Lett. 5(3), 232–235 (2016). https://doi.org/10.1109/LWC.2016.2522963

    Article  Google Scholar 

  37. Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M.: Designing multi-user MIMO for energy efficiency: when is massive MIMO the answer?. In: 2014 IEEE Wireless Communications and Networking Conference (WCNC), pp. 242–247. IEEE (2014)

  38. Björnson, E.; Sanguinetti, L.; Hoydis, J.; Debbah, M.: Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Trans. Wirel. Commun. 14(6), 3059–3075 (2015)

    Article  Google Scholar 

  39. Ngo, H.Q.; Larsson, E.G.; Marzetta, T.L.: Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors highly acknowledge the mentorship of Late Prof. G. Mohiuddin Bhat who passed away due to covid while providing us guidance and was part of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javaid A. Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, J.A., Mustafa, F. & Sidiq, S. New Hybrid Architecture for Energy Efficient and Low Complex Massive MIMO System. Arab J Sci Eng 47, 3141–3149 (2022). https://doi.org/10.1007/s13369-021-06069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-021-06069-6

Keywords

Navigation