Skip to main content

Advertisement

Log in

Spatial variations in urban air pollution: impacts of diesel bus traffic and restaurant cooking at small scales

  • Published:
Air Quality, Atmosphere & Health Aims and scope Submit manuscript

Abstract

Air pollutant concentrations in urban areas exhibit strong spatial and temporal trends because of variations in land use and source distributions. While traffic is an important urban source of pollutants such as NO2 and particulate matter (PM), other sources can also contribute to observed spatiotemporal patterns. PM exposures are further complicated because urban-scale variations in fine particulate matter mass (PM2.5) concentrations can be decoupled from variations in PM physicochemical properties such as composition and the concentration of ultrafine particles (UFPs). Our goal was to quantify spatial gradients in both pollutant concentrations and PM characteristics over spatial scales ranging from hundreds of meters to several kilometers, along with sources influencing the observed spatial patterns. Continuous air pollutant concentrations were measured with a distributed network that consisted of a low-cost sensor package to measure pollutant gases (CO, NO2, O3, CO2), optical measurements of particulate black carbon (BC) and PM2.5, and UFP using condensation particle counters. The sampling sites were classified according to nearby land use for traffic, population, and restaurant density. Mean concentrations of BC and UFP vary by factors of approximately 4 and 3, respectively, across five typical urban sites in a 16 km2 sampling domain. Differences in traffic volume and composition (e.g., diesel bus activity) can describe some, but not all of the observed spatial and temporal differences between sites. Specifically, two sites separated by ~ 500 m in a downtown central business district have significant differences in BC (factor of 2) and UFP (~ 30%), though similar PM2.5 (< 10%), due to varying influences of diesel bus traffic and restaurant cooking emissions. The large spatial gradients have implications for data collection to inform spatial models such as land use regression (LUR). From the standpoint of site selection, the two downtown sites are nominally identical (e.g., both are high traffic, high-source activity sites) but have significant differences in measured pollutant concentrations and source impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data will be available at https://kilthub.cmu.edu/ following publication.

References

  • Andreae MO, Gelencser A (2006) Black Carbon or Brown Carbon? The Nature of Light-Absorbing Carbonaceous Aerosols. Atmos Chem Phys 6:3131–3148

    Article  CAS  Google Scholar 

  • Barath S, Mills NL, Ädelroth E, Olin AC, Blomberg A (2013) Diesel exhaust but not ozone increases fraction of exhaled nitric oxide in a randomized controlled experimental exposure study of healthy human subjects. Environ Heal 12(1):36 (A Glob. Access Sci. Source)

    Article  CAS  Google Scholar 

  • Beelen R, Hoek G, Vienneau D, Eeftens M, Dimakopoulou K, Pedeli X, Tsai M-Y, Kunzli N, Schikowski T, Marcon A et al (2013) Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe, The ESCAPE Project. Atmos Environ 72:10–23

    Article  CAS  Google Scholar 

  • Brauer M (2010) How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease. Proc Am Thorac Soc 7:111–115

    Article  Google Scholar 

  • Brines M, Dall’Osto M, Beddows DCS, Harrison RM, Gómez-Moreno F, Núñez L, Artíñano B, Costabile F, Gobbi GP, Salimi F et al (2015) Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities. Atmos. Chem. Phys. 15(10):5929–5945

    Article  CAS  Google Scholar 

  • Caubel JJ, Cados TE, Preble CV, Kirchstetter TW (2019) A distributed network of 100 black carbon sensors for 100 days of air quality monitoring in West Oakland, California. Environ Sci Technol 53(13):7564–7573

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Chen L-WA, Chang MCO, Robinson NF, Trimble D, Kohl S (2007) The IMPROVE_A Temperature protocol for thermal/optical carbon analysis: maintaining consistency with a long-term database. J Air Waste Manag Assoc 57:1014–1023

    Article  CAS  Google Scholar 

  • Clark LP, Millet DB, Marshall JD (2014) National patterns in environmental injustic and inequality: outdoor NO2 air pollution in the United States. PLoS One 9(4):e94431

    Article  Google Scholar 

  • Clark LP, Millet DB, Marshall JD (2017) Changes in transportation-related air pollution exposures by race-ethnicity and socioeconomic status: outdoor nitrogen dioxide in the United States in 2000 and 2010. Environ. Health Perspect 125(9):097012

  • Dallmann TR, Kirchstetter TW, DeMartini SJ, Harley RA (2013) Quantifying on-road emissions from gasoline-powered motor vehicles: accounting for the presence of medium- and heavy-duty diesel trucks. Environ Sci Technol 47:13873–13881

    Article  CAS  Google Scholar 

  • de Hoogh K, Wang M, Adam M, Badaloni C, Beelen R, Birk M, Cesaroni G, Cirach M, Declercq C, Dedele A et al (2013) Development of land use regression models for particle composition in twenty study areas in Europe. Environ Sci Technol 47(11):5778–5786

    Article  Google Scholar 

  • Eeftens M, Meier R, Schindler C, Aguilera I, Phuleria H, Ineichen A, Davey M, Ducret-Stich R, Keidel D, Probst-Hensch N et al (2016) Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the swiss SAPALDIA Regions. Environ. Heal 15(1):53 (A Glob. Access Sci. Source)

    Article  Google Scholar 

  • Eilenberg RS, Subramanian R, Malings C, Hauryliuk A, Presto AA, Robinson AL (2020) Using a network of lower-cost monitors to identify the influence of modifiable factors driving spatial patterns in fine particulate matter concentrations in an urban environment. J Expo Sci Environ Epidemiol 30(6):949–961

    Article  Google Scholar 

  • Elser M, Bozzetti C, El-Haddad I, Maasikmets M, Teinemaa E, Richter R, Wolf R, Slowik JG, Baltensperger U, Prévôt ASH (2016) Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements. Atmos Chem Phys 16(11):7117–7134

    Article  CAS  Google Scholar 

  • Fine PM, Sioutas C, Solomon PA (2008) Secondary particulate matter in the United States: insights from the particulate matter supersites program and related studies. J Air Waste Manag Assoc 58:234–253

    Article  CAS  Google Scholar 

  • Fuller CH, Brugge D, Williams PL, Mittleman MA, Durant JL, Spengler JD (2012) Estimation of ultrafine particle concentrations at near-highway residences using data from local and central monitors. Atmos Environ 57:257–265

    Article  CAS  Google Scholar 

  • Gass K, Balachandran S, Chang HH, Russell AG, Strickland MJ (2015) Ensemble-based source apportionment of fine particulate matter and emergency department visits for pediatric asthma. Am J Epidemiol 181(7):504–512

    Article  Google Scholar 

  • Gauderman WJ, Urman R, Avol E, Berhane K, McConnell R, Rappaport E, Chang R, Lurmann F, Gilliland F (2015) Association of improved air quality with lung development in children. N Engl J Med 372(10):905–913

    Article  CAS  Google Scholar 

  • Hatzopoulou M, Valois MF, Levy I, Mihele C, Lu G, Bagg S, Minet L, Brook J (2017) Robustness of land-use regression models developed from mobile air pollutant measurements. Environ Sci Technol 51(7):3938–3947

    Article  CAS  Google Scholar 

  • HEI (2013) Understanding the health effects of ambient ultrafine particles, perspectives 3. Health Effects Institute, Boston

  • Heinzerling A, Hsu J, Yip F&nbsp;(2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227:32

  • Herner JD, Hu S, Robertson WH, Huai T, Collins JF, Dwyer H, Ayala A (2009) Effect of advanced aftertreatment for PM and NOx control on heavy-duty diesel truck emissions. Environ Sci Technol 43:5928–5933

    Article  CAS  Google Scholar 

  • Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, Briggs D (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ 42:7561–7578

    Article  CAS  Google Scholar 

  • Holgate S, Sandström T, Frew A, Stenfors N, Nördenhall C, Salvi S, Blomberg A, Helleday R, Söderberg M (2003) Health effects of acute exposure to air pollution. Part I: Healthy and Asthmatic Subjects Exposed to Diesel Exhaust, Health Effects Institute Research Report 112

  • Hudda N, Gould T, Hartin K, Larson TV, Fruin SA (2014) Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environ Sci Technol 48(12):6628–6635

    Article  CAS  Google Scholar 

  • Hudda N, Durant LW, Fruin SA, Durant JL (2020) Impacts of aviation emissions on near-airport residential air quality. Environ Sci Technol 54:29

    Article  Google Scholar 

  • IARC (2014) Monographs on the evaluation of carcinogenic risks to humans, diesel and gasoline engine exhausts and some nitroarenes, vol. 105

  • Jedynska A, Hoek G, Wang M, Eeftens M, Cyrys J, Keuken M, Ampe C, Beelen R, Cesaroni G, Forastiere F et al (2014) Development of land use regression models for elemental, organic carbon, PAH, and hopanes/steranes in 10 ESCAPE/TRANSPHORM European study areas. Environ Sci Technol 48(24):14435–14444

    Article  CAS  Google Scholar 

  • Karner AA, Eisinger DS, Niemeier DA (2010) Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol 44(14):5334–5344

    Article  CAS  Google Scholar 

  • Klompmaker JO, Montagne DR, Meliefste K, Hoek G, Brunekreef B (2015) Spatial Variation of ultrafine particles and black carbon in two cities: results from a short-term measurement campaign. Sci Total Environ 508:266–275

    Article  CAS  Google Scholar 

  • Kozawa K, Park SS, Mara SL, Herner JD (2014) Verifying emission reductions from heavy-duty diesel trucks operating on southern California freeways. Environ Sci Technol 48:1475–1483

    Article  CAS  Google Scholar 

  • Kulmala M, Kontkanen J, Junninen H, Lehtipalo K, Manninen HE, Nieminen T, Petäjä T, Sipilä M, Schobesberger S, Rantala P et al (2013) Direct observations of atmospheric aerosol nucleation. Sci 339(6122):943–946

    Article  CAS  Google Scholar 

  • Li HZ, Dallmann TR, Gu P, Presto AA (2016) Application of mobile sampling to investigate spatial variation in fine particle composition. Atmos Environ 142:71–82

    Article  CAS  Google Scholar 

  • Malings C, Tanzer R, Hauryliuk A, Kumar SPN, Zimmerman N, Kara LB, Presto AA, Subramanian R&nbsp;(2019) Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring. Atmos Meas Tech 12:903–920

  • Malings C, Tanzer R, Hauryliuk A, Saha PK, Robinson AL, Presto AA, Subramanian R (2020) Fine particle mass monitoring with low-cost sensors: corrections and long-term performance evaluation. Aerosol Sci Technol&nbsp;54:160-174

  • Maricq MM (2007) Chemical characterization of particulate emissions from diesel engines: a review. J Aer Sci 38:1079–1118

    Article  CAS  Google Scholar 

  • Masiol M, Zíková N, Chalupa DC, Rich DQ, Ferro AR, Hopke PK (2018a) Hourly land-use regression models based on low-cost PM monitor data. Environ Res 167:7–14

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Chalupa DC, Utell MJ, Rich DQ, Hopke PK (2018b) Long-term trends in submicron particle concentrations in a metropolitan area of the Northeastern United States. Sci Total Environ 633:59–70

    Article  CAS  Google Scholar 

  • May AA, Nguyen NT, Presto AA, Gordon TD, Lipsky EM, Karve M, Gutierrez A, Robertson WH, Zhang M, Brandow C et al (2014) Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles. Atmos Environ 88:247–260

    Article  CAS  Google Scholar 

  • Minet L, Liu R, Valois M-F, Xu J, Weichenthal S, Hatzopoulou M (2018) Development and comparison of air pollution exposure surfaces derived from on-road mobile monitoring and short-term stationary sidewalk measurements. Environ Sci Technol 52(6):3512–3519

    Article  CAS  Google Scholar 

  • Mohr C, DeCarlo PF, Heringa MF, Chirico R, Richter R, Crippa M, Querol X, Baltensperger U, Prevot ASH, Prévôt ASH (2015) Spatial variation of aerosol chemical composition and organic components identified by positive matrix factorization in the barcelona region. Environ Sci Technol 49(17):10421–10430

    Article  CAS  Google Scholar 

  • Ohlwein S, Kappeler R, Kutlar Joss M, Künzli N, Hoffmann B&nbsp;(2019) Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. Int J Public Health 64:547–559

  • Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, Dominici F (2009) Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 117(6):957–963

    Article  CAS  Google Scholar 

  • Presto AA, Saha PK, Robinson AL (2021) Past, present, and future of ultrafine particle exposures in North America. Atmos Environ X 10:100109

    CAS  Google Scholar 

  • Rivas I, Beddows DCS, Amato F, Green DC, Järvi L, Hueglin C, Reche C, Timonen H, Fuller GW, Niemi JV et al (2020) Source apportionment of particle number size distribution in urban background and traffic stations in four European cities. Environ Int 135:105345

    Article  CAS  Google Scholar 

  • Robinson AL, Donahue NM, Shrivastava MK, Weitkamp EA, Sage AM, Grieshop AP, Lane TE, Pierce JR, Pandis SN (2007) Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging. Science 315(80):1259–1262

    Article  CAS  Google Scholar 

  • Robinson ES, Gu P, Ye Q, Li HZ, Shah RU, Apte JS, Robinson AL, Presto AA (2018) Restaurant impacts on outdoor air quality: elevated organic aerosol mass from restaurant cooking with neighborhood-scale plume extents. Environ Sci Technol 52(16):9285–9294

    Article  CAS  Google Scholar 

  • Ronkko T, Virtanen A, Kannosto J, Keskinen J, Lappi M, Pirjola L (2007) Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environ Sci Technol 41:6384–6389

    Article  CAS  Google Scholar 

  • Ronkko T, Lahde T, Heikkila J, Pirjola L, Bauschke U, Arnold F, Schlager H, Rothe D, Yli-Ojanpera J, Keskinen H (2013) Effects of gaseous sulfuric acid on diesel exhaust nanoparticle formation and characteristics. Environ Sci Technol 47:11882–11889

    Article  CAS  Google Scholar 

  • Ryan PH, LeMasters GK (2007) A review of land-use regression models for characterizing intraurban air pollution exposure. Inhal Toxicol 19:127–133

    Article  CAS  Google Scholar 

  • Saha PK, Khlystov A, Snyder MG, Grieshop AP (2018a) Characterization of air pollutant concentrations, fleet emission factors, and dispersion near a North Carolina interstate freeway across two seasons. Atmos Environ 177:143–153

    Article  CAS  Google Scholar 

  • Saha PK, Robinson ES, Shah RU, Zimmerman N, Apte JS, Robinson AL, Presto AA (2018b) Reduced ultrafine particle concentration in urban air: changes in nucleation and anthropogenic emissions. Environ Sci Technol 52(12):6798–6806

    Article  CAS  Google Scholar 

  • Saha PK, Zimmerman N, Malings C, Hauryliuk A, Li Z, Snell L, Subramanian R, Lipsky E, Apte JS, Robinson AL et al (2019) Quantifying high-resolution spatial variations and local source impacts of urban ultrafine particle concentration. Sci Total Environ 655:473–481

    Article  CAS  Google Scholar 

  • Saha PK, Sengupta S, Adams P, Robinson AL, Presto AA (2020) Spatial correlation of ultrafine particle number and fine particle mass at urban scales: implications for health assessment. Environ Sci Technol 54(15):9295–9304

    Article  CAS  Google Scholar 

  • Saleh R, Hennigan CJ, McMeeking GR, Chuang WK, Robinson ES, Coe H, Donahue NM, Robinson AL (2013) Absorptivity of Brown Carbon in Fresh and Photo-Chemically Aged Biomass-Burning Emissions. Atmos Chem Phys 13:7683–7693

    Article  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 1. C1 through C29 organic compounds from meat charbroiling. Environ Sci Technol 33(10):1566–1577

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 4. C1–C27 organic compounds from cooking with seed oils. Environ Sci Technol 36(4):567–575

    Article  CAS  Google Scholar 

  • Schultz ES, Hallberg J, Bellander T, Bergström A, Bottai M, Chiesa F, Gustafsson PM, Gruzieva O, Thunqvist P, Pershagen G et al (2016) Early-life exposure to traffic-related air pollution and lung function in adolescence. Am J Respir Crit Care Med 193(2):171–177

    Article  CAS  Google Scholar 

  • Stanier CO, Khylstov AY, Pandis SN (2004) Nucleation events during the Pittsburgh air quality study: description and relation to key meteorological, gas phase, and aerosol parameters. Aerosol Sci Technol 38(S1):253–264

    Article  CAS  Google Scholar 

  • Subramanian R, Donahue NM, Bernardo-Bricker A, Rogge WF, Robinson AL (2006) Contribution of motor vehicle emissions to organic carbon and fine particle mass in Pittsburgh, Pennsylvania: effects of varying source profiles and seasonal trends in ambient marker concentrations. Atmos Environ 40:8002–8019

    Article  CAS  Google Scholar 

  • Tan Y, Dallmann TR, Robinson AL, Presto AA (2016) Application of plume analysis to build land use regression models from mobile sampling to improve model transferability. Atmos Environ 134:51–60

    Article  CAS  Google Scholar 

  • Tanzer RR, Malings C, Hauryliuk A, Subramanian R, Presto AA (2019) Demonstration of a low-cost multi-pollutant network to quantify spatial variations in air pollutant SOURCE impacts and to evaluate environmental justice. Int J Environ Res Public Health 16:2523

    Article  CAS  Google Scholar 

  • Venecek MA, Yu X, Kleeman MJ (2019) Predicted ultrafine particulate matter source contribution across the continental United States during summertime air pollution events. Atmos Chem Phys 19(14):9399–9412

    Article  CAS  Google Scholar 

  • Vert C, Meliefste K, Hoek G (2016) Outdoor ultrafine particle concentrations in front of fast food restaurants. J Expo Sci Env Epidemiol 26(1):35–41

    Article  CAS  Google Scholar 

  • Virkkula A, Mäkelä T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hämeri K, Koponen IK (2007) A Simple procedure for correcting loading effects of aethalometer data. J Air Waste Manag Assoc 57(10):1214–1222

    Article  Google Scholar 

  • Wang M, Beelen R, Bellander T, Birk M, Cesaroni G, Cirach M, Cyrys J, de Hoogh K, Declercq C, Dimakopoulou K et al (2014) Performance of multi-city land use regression models for nitrogen dioxide and fine particles. Environ Heal Perspect 122:843–849

    Article  CAS  Google Scholar 

  • Weichenthal S, Van Ryswyk K, Goldstein A, Bagg S, Shekkarizfard M, Hatzopoulou M (2016) A land use regression model for ambient ultrafine particles in Montreal, Canada: a comparison of linear regression and a machine learning approach. Environ. Res. 146:65–72s

    Article  CAS  Google Scholar 

  • Wolf K, Cyrys J, Harciníková T, Gu J, Kusch T, Hampel R, Schneider A, Peters A (2017) Land use regression modeling of ultrafine particles, ozone, nitrogen oxides and markers of particulate matter pollution in Augsburg, Germany. Sci Total Environ 579:1531–1540

    Article  CAS  Google Scholar 

  • Zhu Y, Hinds WC, Kim S, Sioutas C (2002a) Concentration and size distribution of ultrafine particles near a major highway. J Air Waste Manag Assoc 52:1032–1042

    Article  Google Scholar 

  • Zhu Y, Hinds WC, Kim S, Shen S, Sioutas C (2002b) Study of ultrafine particles near a major highway with heavy-duty diesel traffic. Atmos Environ 36(27):4323–4435

    Article  CAS  Google Scholar 

  • Zimmerman N, Presto AA, Kumar SPN, Gu J, Hauryliuk A, Robinson ES, Robinson AL, Subramanian R (2018) A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring. Atmos Meas Tech 11(1):291–313

    Article  Google Scholar 

  • Zimmerman N, Li HZ, Ellis A, Hauryliuk A, Robinson ES, Gu P, Shah RU, Ye Q, Snell L, Subramanian R et al (2020) Improving correlations between land use and air pollutant concentrations using wavelet analysis: insights from a low-cost sensor network. Aerosol Air Qual Res 20:314–328

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the Center for Air, Climate and Energy Solution (CACES, www.caces.us). This publication was developed under Assistance Agreement No. RD83587301 awarded by the U.S. Environmental Protection Agency (EPA). This publication has not been reviewed by the EPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert A. Presto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Disclosure

The views expressed in this manuscript do not necessarily represent those of the funding agency.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2390 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, R., Presto, A.A., Saha, P. et al. Spatial variations in urban air pollution: impacts of diesel bus traffic and restaurant cooking at small scales. Air Qual Atmos Health 14, 2059–2072 (2021). https://doi.org/10.1007/s11869-021-01078-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11869-021-01078-8

Keywords

Navigation