Skip to main content
Log in

Design and Performance Analysis of Delta-Doped Hetro-Dielectric GeOI Vertical TFET

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

This paper illustrates delta-doped Hetro-dielectric Germanium on insulator vertical tunnel field-effect transistor (DDH-GeOI VTFET) and its 2D simulations are investigated using ATLAS SILVACO TCAD tool for ultra-low power and high-performance applications. The hetro-dielectric engineering under the gate and use of low bandgap Ge material in source improves the exhibition of the device by increasing ON-state current and reducing the ambipolar current. The realization of the delta-doped layer in the Ge-source region and the use of silicon as a drain material decreases the OFF-state leakage current. The effect on the variation of the device’s physical dimensions has been carried out for different electrical parameters and the dimensions are optimized appropriately through a huge number of simulations. The parameters obtained for the proposed device are high on-state current (ION of 4.33 × 10−5 A/μm, high current ratio (ION/IOFF) of 3.77 × 1014, small average subthreshold-swing (SSavg) of 16.7 mV/dec, and small threshold voltage (VT) of 0.18 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article, or below mentioned references.

References

  1. Taur Y et al (1997) CMOS scaling into the nanometer regime. Proc IEEE 85(4):486–504

    Article  Google Scholar 

  2. Sharma SK, Raj B, Khosla M (2017) Subthres-hold performance of In1-xGaxAs based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications. J Nanoelectronics Optoelectronis 12(2):171–176

    Article  CAS  Google Scholar 

  3. Dennard RH, Gaensslen FH, Rideout VL, Bassous E, LeBlanc AR (1974) Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J Solid State Circuits SSC-9(5):256–258

    Article  Google Scholar 

  4. Roy K, Mukhopadhyay S, Mahmoodi-Meimand H (2003) Leakage current mechanisms and leakage reduction techniques in deep-submicrometer CMOS circuits. Proc IEEE 91(2):305–327

    Article  CAS  Google Scholar 

  5. Bhuwalka KK, Schulze J, Eisele I (2004) Performance enhancement of vertical tunnel field-effect transistor with SiGe in the δp+ layer. Jpn J Appl Phys 43(7A):4073–4078

    Article  CAS  Google Scholar 

  6. Choi WY, Park B-G, Lee JD, Liu T-JK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28(8):743–745

    Article  CAS  Google Scholar 

  7. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479(7373):329–337

    Article  CAS  PubMed  Google Scholar 

  8. Sun M et al (2010) scalable embedded Ge-junction vertical channel tunneling field-effect transistor for low-voltage operation, 2010 IEEE nanotechnology materials and devices conference. Monterey, CA, pp 286–290

    Google Scholar 

  9. Knoch J, Appenzeller J (2005) A novel concept for field-effect transistors - the tunneling carbon nanotube FET. 63rd Device Research Conference Digest, 2005. DRC '05, Santa Barbara, pp 153–156

    Google Scholar 

  10. Avci UE, Morris DH, Young IA (2015) Tunnel field-effect transistors: prospects and challenges. IEEE J Electron Devices Soc 3(3):88–95

    Article  Google Scholar 

  11. Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(9):770–772

    Article  CAS  Google Scholar 

  12. Chawla T, Khosla M, Raj B (2020) Optimization of Double-gate Dual material GeOI-Vertical TFET for VLSI Circuit Design. IEEE VLSI Circuits Syst Lett 6(3):13–25

    Google Scholar 

  13. Chawla T, Khosla M, Raj B (2021) Design and simulation of triple metal double-gate germanium on insulator vertical tunnel field effect transistor. Microelectron J 114(105125):1–8

    Google Scholar 

  14. Singh S, Raj B (2019) Design and analysis of a heterojunction vertical t-shaped tunnel field effect transistor. J Electron Mater 48(10):6253–5260

    Article  CAS  Google Scholar 

  15. Singh RP, Khosla M, Saini I et al. (2020) Design and analysis of IGZO based Junctionless thin film transistor using SOI technology, Silicon

  16. Li R et al (2011) InAs/AlGaSb heterojunction tunnel field-effect transistor with tunneling in-line with the gate field. Phys Status Solidi C 9(2):389–392

    Article  Google Scholar 

  17. Lu Y, Zhou G, Li R, Liu Q, Zhang Q, Vasen T, Chae SD, Kosel T, Wistey M, Xing H, Seabaugh A, Fay P (2012) Performance of AlGaSb/InAs TFETs with gate electric field and tunneling direction aligned. IEEE Electron Device Lett 33(5):655–657

    Article  CAS  Google Scholar 

  18. Shah AP, Vishvakarma SK (2019) An energy efficient 8-transistor full adder cell based on degenerate pass transistor logic. IEEE VLSI Circuits Syst Lett 5(2):1–6

    CAS  Google Scholar 

  19. Kaur S, Raman A, Sarin R (2020) An explicit surface potential, capacitance and drain current model for double-gate TFET. Superlattices Microstruct 140(106431)

  20. Swain M, Sahoo BK, Sahoo SK (2019) Pyroelectric effect in InxGa1-xN/GaN heterostructure. InAIP Conference Proc 2115(1):030469–0301-4

    Google Scholar 

  21. Kim SW, Kim JH, King Liu T-J, Choi WY, Park B-G (2016) Demonstration of L-shaped tunnel field-effect transistors. IEEE Trans Electron Devices 63(4):1774–1778

    Article  CAS  Google Scholar 

  22. Yang Z (2016) Tunnel field-effect transistor with an L-shaped gate. IEEE Electron Device Lett 37(7):839–842

    Article  CAS  Google Scholar 

  23. Nam H, Cho MH, Shin C (2015) Symmetric tunnel field-effect transistor (S-TFET). Current Appl Phys 15(2):71–77

    Article  Google Scholar 

  24. Li W, Liu H, Wang S, Chen S, Yang Z (198, 2017) Design of high-performance Si/SiGe heterojunction tunneling FETs with a T-shaped gate. Nanosc Res Lett 12(1)

  25. Wang W, Wang PF, Zhang CM, Lin X, Liu XY, Sun QQ, Zhou P, Zhang DW (2014) Design of U-Shape Channel tunnel FETs with SiGe source regions. IEEE Trans Electron Devices 61(1):193–197

    Article  CAS  Google Scholar 

  26. Ko E, Lee H, Park J-D, Shin C (2016) Vertical tunnel FET: design optimization with triple metal-gate layers. IEEE Trans Electron Devices 63(12):5030–5035

    Article  CAS  Google Scholar 

  27. Lee MJ, Choi WY (2012) Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Device Lett 33(10):1459–1461

    Article  CAS  Google Scholar 

  28. Bala S., Khosla M., "Design and simulation of nanoscale double-gate TFET/ Tunnel CNTFET," J. Semiconduc., vol. 39, no.4, pp.044001–1-5, 2018

  29. Acharya A, Solanki AB, Glass S, Zhao QT, Anand B (2019) Impact of gate–source overlap on the device/circuit analog performance of line TFETs. IEEE Trans Electron Devices 66(9):4081–4086

    Article  CAS  Google Scholar 

  30. Navlakha N, Lin J-T, Kranti A (Apr. 2017) Retention and scalability perspective of sub-100-nm double gate tunnel FET DRAM. IEEE Trans Electron Devices 64(4):1561–1567

    Article  Google Scholar 

  31. Kim SH, Kam H, Hu C, Liu T-JK (2009) Germanium-source tunnel field-effect transistors with record-high ION/IOFF,” in Proc. Symp VLSI Technol., pp. 178–179

  32. Singh S, Raj B (2020) Analysis of ONOFIC technique using SiGe heterojunction double gate vertical TFET for low power applications. Silicon 12:1–10

    Article  Google Scholar 

  33. Kim SH, Jacobson ZA, Liu T-JK (2010) Impact of body doping and thickness on the performance of germanium-source TFETs. IEEE Trans Electron Devices 57(7):1710–1713

    Article  CAS  Google Scholar 

  34. Vanlalawpuia K, Bhowmick B (2019) Investigation of a Ge-source vertical TFET with Delta-doped layer. IEEE Trans Electron Devices 66(10):4439–4445

    Article  Google Scholar 

  35. ATLAS device simulator software user manual, 2019, Santa Clara, Silvaco Int.

  36. Kao K-H, Verhulst AS, Vandenberghe WG, Sorée B, Groeseneken G, De Meyer K (2012) Direct and indirect band-to-band tunneling in germanium-based TFETs. IEEE Trans Electron Devices 59(2):292–301

    Article  CAS  Google Scholar 

  37. Lee H, Park J, Shin C (2016) Study of random variation in germanium-source vertical tunnel FET. IEEE Trans Electron Devices 63(5):1827–1834

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Electronics and Communication Department of National Institute of Technology, Jalandhar, for their valuable support in carrying out this research work.

Funding

This research did not receive any specific funds from any agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Mohit Mittal- Simulation and writing original draft preparation.

Mamta Khosla and Tulika Chawla- Supervision and writing-review.

Corresponding author

Correspondence to Mohit Mittal.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

All authors freely agreed and gave their consent to participate on this work.

Consent for Publication

All authors freely agreed and gave their consent for the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, M., Khosla, M. & Chawla, T. Design and Performance Analysis of Delta-Doped Hetro-Dielectric GeOI Vertical TFET. Silicon 14, 5503–5511 (2022). https://doi.org/10.1007/s12633-021-01315-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01315-w

Keywords

Navigation