Skip to main content
Log in

Effect of Sintering Mechanisms on the Mechanical Behaviour of SiC and Kaoline Reinforced Hybrid Aluminium Metal Matrix Composite Fabricated through Powder Metallurgy Technique

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Present work focusses on the fabrication of Al-10% SiC-4% Kaoline HMMC by using conventional sintering, Microwave- assisted sintering (MAS) and Spark Plasma Sintering (SPS) techniques. Tensile, Compression and hardness tests were performed as per ASTM standards to study the effect of sintering mechanisms on the fabricated HMMC specimens. Results reveal that an enhancement of 13.3% in U.T.S and 11.7% Compression strength was observed in the Spark Plasma Sintered HMMC when compared to conventional sintered composite specimens because of lesser sintering temperature, time and the absence of intermetallic compounds in the Spark Plasma Sintering process. The formation of the Al2Cu intermetallic compound was identified in the XRD pattern of conventionally sintered Al-10% SiC-4% Kaoline HMMC sample due to the high sintering time and temperature which leads to inadequate mechanical properties. The fractured surface of tensile specimens reveals the presence of cleavages on the conventionally sintered HMMC which confirms the brittle fracture, and the existence of dimples on the Microwave sintered and Spark Plasma Sintered samples which signify that the ductile mode of failure in HMMC samples. Out of the three sintering techniques, Spark Plasma Sintering exhibits superior mechanical properties and lesser porosity levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

Authors confirm that the entire data obtained during the Experiment was included in this available manuscript.

References

  1. Vijaya Ramnath B, Elanchezhian C, Jaivignesh M, Rajesh S, Parswajinan C, Siddique Ahmed Ghias A (2014) Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites. Mater Des 58:332–338. https://doi.org/10.1016/j.matdes.2014.01.068

    Article  CAS  Google Scholar 

  2. Guo H, Zhao Y, Xu S, Li J, Liu N, Zhang Y, Zhang Z (2019) Influence of high B4C contents on structural evolution of Al-B4C nanocomposite powders produced by high energy ball milling. Ceram Int 45:5436–5447. https://doi.org/10.1016/j.ceramint.2018.11.247

    Article  CAS  Google Scholar 

  3. Prashantha Kumar HG, Anthony Xavior M (2018) Encapsulation and microwave hybrid processing of Al 6061–graphene–SiC composites. Mater Manuf Process 33:19–25. https://doi.org/10.1080/10426914.2017.1279320

    Article  CAS  Google Scholar 

  4. Kanthavel K, Sumesh KR, Saravanakumar P (2016) Study of tribological properties on Al/Al2O3/MoS2 hybrid composite processed by powder metallurgy. Alexandria Eng J 55:13–17. https://doi.org/10.1016/j.aej.2016.01.024

    Article  Google Scholar 

  5. Erdemir F, Canakci A, Varol T (2015) Microstructural characterization and mechanical properties of functionally graded Al2024/SiC composites prepared by powder metallurgy techniques. Trans nonferrous met Soc China (English Ed) 25:3569–3577. https://doi.org/10.1016/S1003-6326(15)63996-6

    Article  CAS  Google Scholar 

  6. Samal P, Vundavilli PR, Meher A, Mahapatra MM (2020) Recent progress in aluminum metal matrix composites: a review on processing, mechanical and wear properties. J Manuf Process 59:131–152

    Article  Google Scholar 

  7. Venkatesh VSS, Deoghare AB (2020) Fabrication and mechanical behaviour of Al-Kaoline metal matrix composite fabricated through powder metallurgy technique. Materials today: proceedings. Elsevier ltd, pp 3291–3296

    Google Scholar 

  8. Manohar G, Pandey KM, Maity SR (2020) Effect of China clay on mechanical properties of AA7075/B4C hybrid composite fabricated by powder metallurgy techniques. Mater Today Proc. 45:6321–6326. https://doi.org/10.1016/j.matpr.2020.10.740

    Article  CAS  Google Scholar 

  9. Manohar G, Dey A, Pandey KM, Maity SR (2018) Fabrication of metal matrix composites by powder metallurgy: a review. AIP Conf Proc 1952. https://doi.org/10.1063/1.5032003

  10. Mendoza-Duarte JM, Estrada-Guel I, Carreño-Gallardo C, Martínez-Sánchez R (2015) Study of Al composites prepared by high-energy ball milling; effect of processing conditions. J Alloys Compd 643:S172–S177. https://doi.org/10.1016/j.jallcom.2015.01.018

    Article  CAS  Google Scholar 

  11. Popov VA, Shelekhov EV, Prosviryakov AS, Presniakov MY, Senatulin BR, Kotov AD, Khomutov MG (2017) Particulate metal matrix composites development on the basis of in situ synthesis of TiC reinforcing nanoparticles during mechanical alloying. J Alloys Compd 707:365–370. https://doi.org/10.1016/j.jallcom.2016.10.051

    Article  CAS  Google Scholar 

  12. Li Y, Yang B, Zhang P, Nie Y, Yuan X, Lei Q, Li Y (2021) Cu-Cr-mg alloy with both high strength and high electrical conductivity manufactured by powder metallurgy process. Mater Today Commun 27:102266. https://doi.org/10.1016/j.mtcomm.2021.102266

    Article  CAS  Google Scholar 

  13. Zhou Z, Liu B, Guo W, Fu A, Duan H, Li W (2021) Corrosion behavior and mechanism of FeCrNi medium entropy alloy prepared by powder metallurgy. J Alloys Compd 867:159094. https://doi.org/10.1016/j.jallcom.2021.159094

    Article  CAS  Google Scholar 

  14. Pakdel A, Witecka A, Rydzek G, Awang Shri DN (2017) A comprehensive microstructural analysis of Al–WC micro- and nano-composites prepared by spark plasma sintering. Mater Des 119:225–234. https://doi.org/10.1016/j.matdes.2017.01.064

    Article  CAS  Google Scholar 

  15. Ağaoğulları D (2019) Effects of ZrC content and mechanical alloying on the microstructural and mechanical properties of hypoeutectic Al-7 wt.% Si composites prepared by spark plasma sintering. Ceram Int 45:13257–13268. https://doi.org/10.1016/j.ceramint.2019.04.013

    Article  CAS  Google Scholar 

  16. Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater V 20:152–159. https://doi.org/10.1007/s12613-013-0707-6

    Article  CAS  Google Scholar 

  17. Reddy MP, Shakoor RA, Parande G, Manakari V, Ubaid F, Mohamed AMA, Gupta M (2017) Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through microwave sintering and hot extrusion techniques. Prog Nat Sci Mater Int 27:606–614. https://doi.org/10.1016/j.pnsc.2017.08.015

    Article  CAS  Google Scholar 

  18. Leonelli C, Veronesi P, Denti L, Gatto A, Iuliano L (2008) Microwave assisted sintering of green metal parts. J Mater Process Technol 205:489–496. https://doi.org/10.1016/j.jmatprotec.2007.11.263

    Article  CAS  Google Scholar 

  19. Saheb N, Hakeem AS, Khalil A, al-Aqeeli N, Laoui T (2013) Synthesis and spark plasma sintering of Al-mg-Zr alloys. J Cent South Univ 20:7–14. https://doi.org/10.1007/s11771-013-1452-8

    Article  CAS  Google Scholar 

  20. Venkatesh VSS, Deoghare AB (2021) Microstructural characterization and mechanical behaviour of SiC and Kaoline reinforced Aluminium metal matrix composites fabricated through powder metallurgy technique. Silicon. https://doi.org/10.1007/s12633-021-01154-9

  21. Manohar G, Pandey KM, Maity SR (2020) Effect of China clay on mechanical properties of AA7075/B4C hybrid composite fabricated by powder metallurgy techniques. Mater Today Proc 45:6321–6326. https://doi.org/10.1016/j.matpr.2020.10.740

    Article  CAS  Google Scholar 

  22. Dědková K, Janíková B, Matějová K, Peikertová P, Neuwirthová L, Holešinský J, Kukutschová J (2015) Preparation, characterization and antibacterial properties of ZnO/kaoline nanocomposites. J Photochem Photobiol B Biol 148:113–117. https://doi.org/10.1016/j.jphotobiol.2015.03.034

    Article  CAS  Google Scholar 

  23. Sankara Raju RS, Panigrahi MK, Ganguly RI, Srinivasa Rao G (2019) Tribological behaviour of al-1100-coconut shell ash (CSA) composite at elevated temperature. Tribol Int 129:55–66. https://doi.org/10.1016/j.triboint.2018.08.011

    Article  CAS  Google Scholar 

  24. Sic S, Natural H, Electrical P et al (2014). Silicon carbide:9863

  25. Manikandan R, Arjunan TV, Akhil AR (2020) Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075) hybrid metal matrix composite. Compos Part B Eng 183:107668. https://doi.org/10.1016/j.compositesb.2019.107668

    Article  CAS  Google Scholar 

  26. Venkatesh VSS, Deoghare AB (2020) Effect of controllable parameters on the tribological behavior of ceramic particulate reinforced aluminium metal matrix composites: A review. J Phys Conf Ser 1451. https://doi.org/10.1088/1742-6596/1451/1/012025

  27. Ravi Kumar K, Pridhar T, Sree Balaji VS (2018) Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash(CSA) reinforced aluminium (Al 6082) matrix hybrid composite. J Alloys Compd 765:171–179. https://doi.org/10.1016/j.jallcom.2018.06.177

    Article  CAS  Google Scholar 

  28. Manohar G, Pandey KM, Maity SR (2021) Effect of sintering mechanisms on mechanical properties of AA7075/B4C composite fabricated by powder metallurgy techniques. Ceram Int 47:15147–15154. https://doi.org/10.1016/j.ceramint.2021.02.073

    Article  CAS  Google Scholar 

  29. Ozkaya S, Canakci A (2016) Effect of the B4C content and the milling time on the synthesis, consolidation and mechanical properties of AlCuMg-B4C nanocomposites synthesized by mechanical milling. Powder Technol 297:8–16. https://doi.org/10.1016/j.powtec.2016.04.004

    Article  CAS  Google Scholar 

  30. Topcu I, Gulsoy HO, Kadioglu N, Gulluoglu AN (2009) Processing and mechanical properties of B4C reinforced Al matrix composites. J Alloys Compd 482:516–521. https://doi.org/10.1016/j.jallcom.2009.04.065

    Article  CAS  Google Scholar 

  31. Ramadoss N, Pazhanivel K, Anbuchezhiyan G (2020) Synthesis of B4C and BN reinforced Al7075 hybrid composites using stir casting method. J Mater Res Technol 9:6297–6304. https://doi.org/10.1016/j.jmrt.2020.03.043

    Article  CAS  Google Scholar 

  32. Toptan F, Kilicarslan A, Karaaslan A, Cigdem M, Kerti I (2010) Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites. Mater Des 31:S87–S91. https://doi.org/10.1016/j.matdes.2009.11.064

    Article  CAS  Google Scholar 

  33. Guo X, Zhu L, Li W, Yang H (2013) Preparation of SiC powders by carbothermal reduction with bamboo charcoal as renewable carbon source. J Adv Ceram 2:128–134. https://doi.org/10.1007/s40145-013-0050-4

    Article  CAS  Google Scholar 

  34. Álvarez-Docio CM, Portela R, Reinosa JJ, Rubio-Marcos F, Pascual L, Fernández JF (2020) Performance and stability of wet-milled CoAl2O4, Ni/CoAl2O4 and Pt,Ni/CoAl2O4 for soot combustion. Catalysts 10(4):406. https://doi.org/10.3390/catal10040406

  35. Mohamed Abdul Ghani NNA, Saeed MA, Hashim IH (2017) Thermoluminescence (TL) response of silica nanoparticles subjected to 50 Gy gamma irradiation. Malaysian J Fundam Appl Sci 13:178–180. https://doi.org/10.11113/mjfas.v13n3.593

    Article  Google Scholar 

  36. Bajpai N, Tiwari A, Khan SA, Kher RS, Bramhe N, Dhoble SJ (2014) Effects of rare earth ions (Tb, Ce, Eu, Dy) on the thermoluminescence characteristics of sol-gel derived and γ-irradiated SiO2 nanoparticles. Luminescence 29:669–673. https://doi.org/10.1002/bio.2604

    Article  CAS  PubMed  Google Scholar 

  37. Teo SH, Taufiq-Yap YH, Rashid U, Islam A (2015) Hydrothermal effect on synthesis, characterization and catalytic properties of calcium methoxide for biodiesel production from crude Jatropha curcas. RSC Adv 5:4266–4276. https://doi.org/10.1039/c4ra11936c

    Article  CAS  Google Scholar 

  38. Bharali D, Devi R, Bharali P, Deka RC (2015) Synthesis of high surface area mixed metal oxide from the NiMgAl LDH precursor for nitro-aldol condensation reaction. New J Chem 39:172–178. https://doi.org/10.1039/c4nj01332h

    Article  CAS  Google Scholar 

  39. Phromma S, Wutikhun T, Kasamechonchung P, Eksangsri T, Sapcharoenkun C (2020) Effect of calcination temperature on photocatalytic activity of synthesized TiO2 nanoparticles via wet ball milling sol-gel method. Appl Sci 10. https://doi.org/10.3390/app10030993

  40. Ma H, Zhao B, Ding K, Zhang Y, Wu G, Gao Y (2020) Influence of dealloying solution on the microstructure of nanoporous copper through chemical dealloying of Al75Cu25ribbons. J Mater Res 35:2610–2619. https://doi.org/10.1557/jmr.2020.69

    Article  CAS  Google Scholar 

  41. Gatea S, Ou H, McCartney G (2018) Deformation and fracture characteristics of Al6092/SiC/17.5p metal matrix composite sheets due to heat treatments. Mater Charact 142:365–376. https://doi.org/10.1016/j.matchar.2018.05.050

    Article  CAS  Google Scholar 

  42. Zhang L, Shi G, Xu K, Hao W, Li Q, Junyan W, Wang Z (2020) Phase transformation and mechanical properties of B4C/Al composites. J Mater Res Technol 9:2116–2126. https://doi.org/10.1016/j.jmrt.2019.12.042

    Article  CAS  Google Scholar 

  43. Viala JC, Bouix J, Gonzalez G, Esnouf C (1997) Chemical reactivity of aluminium with boron carbide. J Mater Sci 32:4559–4573. https://doi.org/10.1023/A:1018625402103

    Article  CAS  Google Scholar 

  44. Liu R, Wu C, Zhang J, Luo G, Shen Q, Zhang L (2018) Microstructure and mechanical behaviors of the ultrafine grained AA7075/B4C composites synthesized via one-step consolidation. J Alloys Compd 748:737–744. https://doi.org/10.1016/j.jallcom.2018.03.152

    Article  CAS  Google Scholar 

  45. Abdollahi A, Alizadeh A, Baharvandi HR (2014) Dry sliding tribological behavior and mechanical properties of Al2024-5wt.%B4C nanocomposite produced by mechanical milling and hot extrusion. Mater Des 55:471–481. https://doi.org/10.1016/j.matdes.2013.09.024

    Article  CAS  Google Scholar 

  46. Ashwath P, Xavior MA (2018) Effect of ceramic reinforcements on microwave sintered metal matrix composites. Mater Manuf Process 33:7–12. https://doi.org/10.1080/10426914.2016.1244851

    Article  CAS  Google Scholar 

  47. Baradeswaran A, Elayaperumal A, Franklin Issac R (2013) A statistical analysis of optimization of wear behaviour of Al- Al 2O3 composites using taguchi technique. Procedia Eng 64:973–982

    Article  CAS  Google Scholar 

  48. Fadavi Boostani A, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Xu J, Zhang X, Gong D (2015) Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci Manuf 68:155–163. https://doi.org/10.1016/j.compositesa.2014.10.010

    Article  CAS  Google Scholar 

  49. Surya MS, Prasanthi G, Gugulothu SK (2021) Investigation of mechanical and Wear behaviour of Al7075/SiC composites using response surface methodology. Silicon 13:2369–2379. https://doi.org/10.1007/s12633-020-00854-y

    Article  CAS  Google Scholar 

  50. Sharma P, Sharma S, Khanduja D (2016) Effect of graphite reinforcement on physical and mechanical properties of aluminum metal matrix composites. Part Sci Technol 34:17–22. https://doi.org/10.1080/02726351.2015.1031924

    Article  CAS  Google Scholar 

  51. Bhowmik A, Dey D, Biswas A (2020) Comparative study of microstructure, physical and mechanical characterization of SiC/TiB2 reinforced Aluminium matrix composite. Silicon 13:2003–2010. https://doi.org/10.1007/s12633-020-00591-2

    Article  CAS  Google Scholar 

  52. Manigandan K, Srivatsan TS, Ren Z, Zhao J (2016) Influence of reinforcement content on tensile response and fracture behavior of an aluminum alloy metal matrix composite. Adv Compos Aerospace, Mar L Appl II 2013:103–119. https://doi.org/10.1007/978-3-319-48141-8_8

    Article  Google Scholar 

  53. Balasubramanian I, Maheswaran R (2015) Effect of inclusion of SiC particulates on the mechanical resistance behaviour of stir-cast AA6063/SiC composites. Mater Des 65:511–520. https://doi.org/10.1016/j.matdes.2014.09.067

    Article  CAS  Google Scholar 

  54. Ozden S, Ekici R, Nair F (2007) Investigation of impact behaviour of aluminium based SiC particle reinforced metal-matrix composites. Compos Part A Appl Sci Manuf 38:484–494. https://doi.org/10.1016/j.compositesa.2006.02.026

    Article  CAS  Google Scholar 

  55. Bhowmik A, Chakraborty D, Dey D, Biswas A (2019) Investigation on wear behaviour of Al7075-SiC metal matrix composites prepared by stir casting. Materials today: proceedings. Elsevier ltd, pp 2992–2995

    Google Scholar 

  56. Anselmi-Tamburini U (2019) Spark Plasma Sintering. In: Reference Module in Materials Science and Materials Engineering. Elsevier

Download references

Acknowledgements

Authors like to thank Central Instrumentation Facility at National Institute of Technology Silchar for XRD analysis. The authors also would like to appreciate the Advance centre for Material Science at Indian Institute of Technology Kanpur for SEM and EDS analysis.

Author information

Authors and Affiliations

Authors

Contributions

V.S.S Venkatesh carried out the fabrication, Mechanical characterization of composite samples and Drafted the initial version of the manuscript. Ashish B Deoghare Reviewed and Edited the prepared manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashish B Deoghare.

Ethics declarations

The Authors declare that they don’t have known personal relationships or competing financial interest that could have appeared to influence the work reported in this manuscript.

Ethical Approval

Ethics Approval All experiments were conducted ethically and no issues regarding ethical issues arouse during the experiments or the manuscript confection.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Consent to Participate

All the Authors are happily agree to contribute in this research work.

Consent for Publication

Consent was obtained from all authors to publish this manuscript. All the authors read and approved this manuscript to publish this article.

Conflict of Interest

Authors declared that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatesh, V., Deoghare, A.B. Effect of Sintering Mechanisms on the Mechanical Behaviour of SiC and Kaoline Reinforced Hybrid Aluminium Metal Matrix Composite Fabricated through Powder Metallurgy Technique. Silicon 14, 5481–5493 (2022). https://doi.org/10.1007/s12633-021-01333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01333-8

Keywords

Navigation