Skip to main content
Log in

Experimental, Computational and Mathematical Analysis of Hybrid Abrasive Flow Machining Process

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

The current scenario of industrialization requires need for higher productivity which is met by advanced material removal process, i.e., abrasive flow machining (AFM) in which the internal surfaces of the workpiece is machined to higher accuracy level with the help of abrasive laden media. In this paper, the conventional AFM setup has been made hybrid using electrolytic and magnetic force arrangement alongwith rotational effect in order to achieve better results in terms of material removal and surface roughness. The newly developed in-house polymer media were utilized in the process and the input parameters taken during experimentation were magnetic flux, electrolytic rod size and shape, rotational speed, polymer media, abrasive particles and extrusion pressure. It was found that the material removal and surface roughness improvement were more in electrochemo magneto rotational AFM process compared to conventional AFM process. The experimental values were in confirmation with those obtained in the optimization techniques applied, i.e., Taguchi L9 OA, Matlab fuzzy logic and GRA-PCA. In addition, the hybrid mathematical model was developed and effect of different forces occurring in the process and computational flow analysis of media have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig.10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

α:

Angle between magnetic field and plane of solenoid coil

Bp :

Peak magnetic field

ω:

Angular frequency of current

M:

Mutual induction

R:

Erosion rate of workpiece material

VA :

Volume removed by single particle

Fa :

Axial force

Fr :

Radial force

Ft :

Tangential force

m:

Mass of abrasive particle

ρ:

Density of abrasive material

r:

Radius of iron oxide particle

p:

Extrusion pressure

pm :

Magnetic pressure

τs :

Shear stress

V* :

Shear velocity

umax :

Maximum fluid velocity

\(\frac{{{\text{du}}}}{{{\text{dy}}}}\) :

Velocity gradient of fluid

\(\frac{{{\text{H}}^{2} }}{{8{\uppi }}}\) :

Magnetic pressure

B:

Magnetic field

Ø:

Magnetic flux

N:

Number of abrasive particles

hi :

Response of node of hidden layer

wi :

Weight of connection to hidden layer

f:

Transfer function

AFM:

Abrasive flow machining

EDM:

Electric discharge machining

ECM:

Electrochemical machining

MAF:

Magnetic abrasive finishing

AECG:

Abrasive electro chemical grinding

UAAFM:

Ultrasonic assisted abrasive flow machining

MRP:

Magneto rheological polishing

ECP/ECF:

Electrochemical polishing/finishing

DOA:

Dio-iso octyl adiabate

DOP:

Dio-iso octyl pthalate

ECMR-AFM:

Electro chemical magnetic rotational AFM

RSM:

Response surface methodology

ANOVA:

Analysis of variance

GRA:

Grey relational analysis

GRC:

Grey relational coefficient

MPCI:

Multi performance characteristics index

FIS:

Fuzzy inference system

OA:

Orthogonal array

GA:

Genetic algorithm

MR:

Material removal

SBR:

Styrene butadiene rubber

NR:

Natural rubber

NTR:

Nitrile rubber

PBS:

Polyborosiloxane

SLM:

Selective laser melting

SR:

Silicon rubber

MS:

Mild steel

References

  1. Dixit, N., Sharma, V., & Kumar, P. (2021). Research trends in abrasive flow machining: A systematic review. Journal of Manufacturing Processes, 64, 1434–1461.

    Article  Google Scholar 

  2. Fountas, N. A., & Vaxevanidis, N. M. (2021). Optimization of abrasive flow nano-finishing processes by adopting artificial viral intelligence. Journal of Manufacturing Materials Process, 5(1), 22–32.

    Article  Google Scholar 

  3. Seyedi, S. S., Shabgard, M. R., Mousavi, B., & Heris, S. Z. (2021). The impact of SiC, Al2O3, and B2O3 abrasive particles and temperature on wear characteristics of 18Ni (300) maraging steel in abrasive flow machining (AFM). International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.04.051

    Article  Google Scholar 

  4. Tripathi, D. R., Vachhani, K. H., Bandhu, D., Kumari, S., Kumar, V. K., & Abhishek, Kumar. (2021). Experimental investigation and optimization of abrasive waterjet machining parameters for GFRP composites using metaphor-less algorithms. Materials and Manufacturing Processes. https://doi.org/10.1080/10426914.2020.1866193

    Article  Google Scholar 

  5. Routara B, Nanda B.K, Sahoo A.K, Thatoi D.N. Optimisation of multiple performance characteristics in abrasive jet machining using grey relational analysis. International Journal of Manufacturing Technology and Management 2021; 24(1/2/3/4): 4 – 22

  6. Kumar, R., Modi, A., Panda, A., Sahoo, A. K., Deep, A., Behra, P. K., & Tiwari, R. (2019). Hard turning on jis s45c structural steel: An experimental, modelling and optimisation approach. International Journal of automotive and mechanical engineering, 16(4), 23–33.

    Article  Google Scholar 

  7. Mohanty, S., Routara, B. C., Nanda, B. K., Das, D. K., & Sahoo, A. K. (2018). Study of machining characteristics of Al-SiCp12% composite in nano powder mixed dielectric electrical discharge machining using RSM. Materials Today Proceedings, 5(11), 22581–25590.

    Article  Google Scholar 

  8. Routara, B. C., Das, D., Satpathy, M. P., Nanda, B. K., Sahoo, A. K., & Singh, S. S. (2020). Investigation on machining characteristics of T6-Al7075 during EDM with Cu tool in steady and rotary mode. Materials Today Proceedings, 26(2), 2143–2150.

    Article  Google Scholar 

  9. Banik D, Rahul, Kar G, Debnath B, Routara B.C, Sahoo A.K, Kochar D. (2019) Machining Performance Optimization During Electro Discharge Machining on Titanium (Grade 4): Application of Satisfaction Function and Distance-Based. Advances in Industrial and Production Engineering 2021: 535–542

  10. Thamizhvalavan, Y. N., & Arivazhagan, S. (2021). Abrasive water jet machining of al6063/b4c/zrsio4 hybrid composites: A study of machinability and surface characterization analysis. Silicon. https://doi.org/10.1007/s12633-020-00888-2

    Article  Google Scholar 

  11. Baraiya, R., Babbar, A., Jain, V., & Gupta, D. (2020). In-situ simultaneous surface finishing using abrasive flow machining via novel fixture. Journal of manufacturing processes, 50, 266–278.

    Article  Google Scholar 

  12. Han, S., Salvatore, F., Rech, J., & Bajolet, J. (2020). Abrasive flow machining (AFM) finishing of conformal cooling channels created by selective laser melting (SLM). Precision Engineering, 64, 20–23.

    Article  Google Scholar 

  13. Wei, H., Peng, C., Gao, H., Ping, X., & Wang, X. (2019). On establishment and validation of a new predictive model for material removal in abrasive flow machining. International Journal of Machine Tools and Manufacture, 138, 66–79.

    Article  Google Scholar 

  14. Wei, H., Peng, C., Gao, H., Wang, X., & Wang, X. (2019). On establishment and validation of a new predictive model for material removal in abrasive flow machining. International Journal of Machine Tools & Manufacture, 138, 66–79.

    Article  Google Scholar 

  15. Wei, H., Gao, H., & Wang, X. (2019). Development of novel guar gum hydrogel based media for abrasive flow machining shear thickening behavior and finishing performance. International Journal of Mechanical Sciences, 157–158, 758–772.

    Article  Google Scholar 

  16. Singh, P., Singh, L., & Singh, S. (2020). Manufacturing and performance analysis of mechanically alloyed magnetic abrasives for magneto abrasive flow finishing. Journal of manufacturing processes, 50, 161–169.

    Article  Google Scholar 

  17. Zhao, J., Huang, J., Wang, R., Peng, H. R., Hang, W., & Ji, S. (2020). Investigation of the optimal paramaters for the surface finish of K9 optical glass using a soft abrasive rotary flow polishing process. Journal of manufacturing processes, 49, 26–34.

    Article  Google Scholar 

  18. Zhang, J., Chaudhari, A., & Wang, H. (2019). Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316 L stainless steel. Journal of manufacturing processes, 45, 710–719.

    Article  Google Scholar 

  19. Ali, P., Dhull, S., Walia, R. S., Murtaza, Q., & Tyagi, M. (2017). Hybrid abrasive flow machining for nano-finishing- a review. Materials Today Proceedings, 4(8), 7208–7218.

    Article  Google Scholar 

  20. Dhull, S., Walia, R. S., Murtaza, Q., & Niranjan, M. S. (2019). Electrochemo- magneto abrasive flow machining setup fabrication and experimental investigation of the process alongwith mathematical modelling and simulation. Independent Journal of Management & Production, 10(8), 1834–1849.

    Article  Google Scholar 

  21. Brar BS, Walia RS, Singh VP, Sharma M. Helical abrasive flow machining (hlx-afm) process. International Journal of Surface engineering and Materials Technology 2012; 604–608.

  22. Ravi Sankar, M., Mondal, S., Ramkumar, J., & Jain, V. K. (2012). Experimental investigations and modelling of drill bit guided abrasive flow finishing (DBG-AFF) process. International Journal of Advanced Manufacturing Technology, 42, 678–688.

    Article  Google Scholar 

  23. Sharma AK, Kumar P and Rajesha S. An improved ultrasonic abrasive flow machining. Patent number 3578/DEL/201, India.

  24. Singh, S., & Shan, H. S. (2002). Development of magneto abrasive flow machining process. International Journal of Machine Tool & Manufacture, 42, 953–959.

    Article  Google Scholar 

  25. Charles C. Family Firm to Modern Multinational - Norton Company, a New England Entreprise, Cambridge, MA, Harvard University Press.

  26. Petri, K. L., Billuo, R. E., & Bidando, B. (1998). A neural network process model for abrasive flow machining operation. Journal of manufacturing systems, 17(1), 52–64.

    Article  Google Scholar 

  27. Silva, A. K. M. D., & Geough, J. A. M. (2000). Computer applications in unconventional machining. Journal of Materials Processing Technology, 107, 276–282.

    Article  Google Scholar 

  28. Kumar, P., Tailor, B., Agrawal, A., & Joshi, S. S. (2013). Evolution of electrochemical finishing processes through cross innovations and modeling. International Journal of Machine Tools & Manufacture, 66, 15–36.

    Article  Google Scholar 

  29. Paul, L., Shekhar, S., & Hiremath, S. (2013). Response surface modelling of micro holes in electrochemical discharge machining process. International conference on design and manufacturing, 64, 1395–1404.

    Google Scholar 

  30. Zaborski, S., Łupak, M., & Poro, D. (2004). Wear of cathode in abrasive electrochemical grinding of hardly machined materials. Journal of Materials Processing Technology, 149, 414–418.

    Article  Google Scholar 

  31. Jain, R. K., Jain, V. K., & Kalra, P. K. (1999). Modelling of abrasive flow machining process: A neural network approach. Wear, 231, 242–248.

    Article  Google Scholar 

  32. Venkatesh, G., Sharma, A. K., & Singh, N. (2015). Simulation of media behaviour in vibration assisted abrasive flow machining. Simulation Modelling Practice and Theory, 51, 1–13.

    Article  Google Scholar 

  33. Sankara M, Babu AG. Effect of reinforcement particles on the abrasive assisted electrochemical machining of Aluminium-Boron carbide-Graphite composite. 12th Global congress on manufacturing and management. Procedia Engineering 2006; 97: 381 – 389.

  34. Dabrowski, L., Marciniak, M., Wieczarek, W., & Zygmunt, A. (2006). Advancement of abrasive flow machining using an anodic solution. Journal of New Materials for Electrochemical Systems, 9, 439–445.

    Google Scholar 

  35. Singh, R., Walia, R. S., & Suri, N. M. (2015). Parametric optimization of Centrifugal- magnetic force assisted abrasive flow machining process using utility concept. International Journal of Research in Engineering and Technology, 4(8), 2321–2230.

    Google Scholar 

  36. Jui, S. K., Kamaraj, A. B., & Sundaram, M. M. (2015). High aspect ratio micromachining of glass by electrochemical discharge machining. Journal of Manufacturing Processes, 15, 460–466.

    Article  Google Scholar 

  37. Uhlmann, E., Schmiedel, C., & Wendler, J. (2015). CFD simulation of the abrasive flow machining process. Procedia CIRP, 31, 209–214.

    Article  Google Scholar 

  38. Di Corleto J. Innovations in Abrasive Products for Precision Grinding. Precision Grinding and Finishing Conference, Gorham 2001.

  39. Jain, R. K., & Jain, V. K. (1999). Simulation of surface generated in abrasive flow machining process. Robotics and computer integrated manufacturing, 15, 403–412.

    Article  Google Scholar 

  40. Yan, B. H., Wang, C. C., & Lin, Y. C. (2006). Feasibility study of rotary electrical discharge machining with ball burnishing for Al2O3/6061Al composite. International Journal of Machine Tools & Manufacture, 40, 1403–1421.

    Article  Google Scholar 

  41. Tzeng, H. Z., Yan, B. H., Hsu, R. T., & Chow, H. M. (2007). Finishing effect of abrasive flow machining on micro slit fabricated by wire-EDM. International Journal of Advanced Manufacturing Technology, 34, 649–656.

    Article  Google Scholar 

  42. Zhang, M., & Jin, D. G. (2009). EDM performance of electroformed Cu-ZrB2 shell electrodes. Rapid Prototyping Journal, 15(2), 150–156.

    Article  Google Scholar 

  43. Chryssolouris G., Guillot M. Modelling of machining process using neural network. Trans. ASME 1990 J. Eng. Ind, Vol. 112, pp. 122–131.

  44. Ghoshal, B., & Bhattacharyya, B. (2015). Investigation on profile of microchannel generated by electrochemical micromachining. Journal of Materials Processing Technology, 222, 410–421.

    Article  Google Scholar 

  45. Jahan, M. P., Rahman, M., & Wong, Y. S. (2011). A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools & Manufacture, 51, 837–858.

    Article  Google Scholar 

  46. Jiang, B. Y., Lan, S. H., & Ni, J. (2009). Modeling and experimental investigation of gas film in micro-electrochemical discharge machining process. International Journal of Machine Tools & Manufacture, 90, 8–15.

    Article  Google Scholar 

  47. Yang, C. T., Song, S. L., Yan, B. H., & Huang, F. Y. (2006). Improving machining performance of wire electrochemical discharge machining by adding SiC abrasive to electrolyte. International Journal of Machine Tools & Manufacture, 46, 2044–2050.

    Article  Google Scholar 

  48. Lin, Y. C., & Lee, H. S. (2009). Optimization of machining parameters using magnetic-force-assisted EDM based on gray relational analysis. International Journal of Advanced Manufacturing Technology, 42, 1052–1064.

    Article  Google Scholar 

  49. Niranjana MS, Jha S. Flow Behaviour Of Bidisperse MR Polishing Fluid And Ball End MR Finishing. 3rd International Conference on Materials Processing and Characterisation Procedia Materials Science 2009; 6: 798 – 804.

  50. Das, M., Jain, V. K., & Ghoshdastidar, P. S. (2008). Analysis of magnetorheological abrasive flow finishing (MRAFF) process. International Journal of Advanced Manufacturing Technology, 38, 613–621.

    Article  Google Scholar 

  51. Singh, A. K., Jha, S., & Pandey, P. M. (2012). Nanofinishing of a typical 3D ferromagnetic workpiece using ball end magnetorheological finishing process. International Journal of Machine Tools & Manufacture, 63, 21–31.

    Article  Google Scholar 

  52. Kala, P., & Pandey, P. M. (2015). Comparison of finishing characteristics of two paramagnetic materials using double disc magnetic abrasive finishing. Journal of Manufacturing Processes, 17, 63–77.

    Article  Google Scholar 

  53. Vaishya R, Walia RS, Kalra P. Design and Development of hybrid electrochemical and centrifugal force assisted abrasive flow machining. 4th International Conference on Materials Processing and Characterization, Materials Today Proceedings 2015; 2: 3327 – 3341.

  54. Roades LJ. Abrasive flow machining. Technical Paper of Society of Manufacturing Engineers (SME): 89–145 .

  55. Kurita, T., & Hattori, M. (2006). A study of EDM and ECM/ECM-lapping complex machining technology. International Journal of Machine Tools & Manufacture, 46, 1804–1810.

    Article  Google Scholar 

  56. Pal, P., & Jain, K. K. (2018). Computational simulation of Abrasive Flow Machining for two dimensional models. Materials Today Proceedings, 5(2), 12969–12983.

    Article  Google Scholar 

  57. Gupta, G. A., Ansari, I. A., Ramkumar, J., & Kar, K. K. (2021). Rheological characterization of newly developed fly-ash mixed polymer media and its finishing performance through abrasive flow machining. Cleaner Engineering and Technology, 2, 85–100.

    Article  Google Scholar 

  58. Fu, Y., Gao, H., Yan, Q. S., & Wang, X. P. (2019). A new predictive methodof the finished surface profile in abrasive flow machining process. Precision Engineering, 60, 497–505.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Dhull.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Laws Used in Magnetic Field and Time Derivative Approach

Appendix 1: Laws Used in Magnetic Field and Time Derivative Approach

The time derivative approach in magnetic field generation is explained as under in Eqs. (26) and (27).

$$\nabla \times \vec{H}|_{t + \Delta t/2} = e_{1} \frac{{\vec{e}|_{t + \Delta t} - \vec{e}|_{t} }}{\Delta t}$$
(26)
$$\vec{e}|_{t + \Delta t/2} = \vec{e}|_{t} + \frac{\Delta t}{e}\left( {\nabla \times \vec{H}|_{t + \Delta t/2} } \right)$$
(27)

where \(\vec{e}|_{t + \Delta t/2}\) is field at next time step, \(\vec{e}|_{t}\) is field at previous time step, \(\frac{\Delta t}{e}\) is update coefficient and \(\vec{H}|_{t + \Delta t/2}\) is curl of the other field at intermediate time step. The Maxwell Eq. (27) is used to determine electromagnetic forces and the direction of the magnetic lines. The equation can be denoted mathematically as:

$$\nabla .{\text{B}} = 0$$
(28)

where B is the magnetic flux density.

$$\frac{1}{r}\frac{d}{dr}\left( {r\frac{d\varphi }{{dr}}} \right) + \frac{{d^{2} \varphi }}{{dz^{2} }} = 0$$
(29)

where \(\varphi\) is the azimuthal angle, z is the height of the workpiece where the effect of magnetic field is produced. The differential Eq. (29) clearly explains the solution of azimuthal angle.

Gauss’ Law:

\(\nabla .\vec{S}\) = θ

$$\nabla .\vec{S} = \frac{\partial Sx}{{\partial x}} + \frac{\partial Sy}{{\partial y}} + \frac{\partial Sz}{{\partial z}}$$
(30)

\(\nabla .\vec{B}\) = 0

$$\nabla .\vec{B} = \frac{\partial Bx}{{\partial x}} + \frac{\partial By}{{\partial y}} + \frac{\partial Bz}{{\partial z}}$$
(31)

The Gauss’ law is explained in Eqs. (30) and (31)

Faraday’s Law is explained in Eq. (32).

$$\nabla \times \vec{e} = - \frac{{\partial \vec{B}}}{\partial t}$$
$$\nabla \times \vec{e} = \left( {\frac{\partial ex}{{\partial y}} - \frac{\partial ey}{{\partial z}}} \right){\text{bx}} + \left( {\frac{\partial ey}{{\partial z}} - \frac{\partial ez}{{\partial x}}} \right){\text{by}} + \left( {\frac{\partial ey}{{\partial x}} - \frac{\partial ez}{{\partial y}}} \right){\text{bz}}$$
(32)

According to Ampere’s law as shown in Eq. (33),

$$\nabla \times \vec{H} = \vec{i} + \frac{{\partial \vec{S}}}{\partial t}$$
(33)

where \(\vec{i}\) is the current density. A B field induces an H field which is directly proportional to the permeability, as shown in Eq. (34).

$$\vec{B}\left( {\text{t}} \right) = \left[ {\upmu \left( {\text{t}} \right)} \right].\vec{H}\left( {\text{t}} \right)$$
(34)

where µ is the permeability index of the medium.

$$\vec{S}\left( {\text{t}} \right) = \left[ {e_{1} \left( {\text{t}} \right)} \right].\vec{e}\left( {\text{t}} \right)$$
(35)

The above Eq. (35) denotes the induction of e field due to S field which is proportional to permittivity e1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhull, S., Walia, R.S., Murtaza, Q. et al. Experimental, Computational and Mathematical Analysis of Hybrid Abrasive Flow Machining Process. Int. J. Precis. Eng. Manuf. 22, 1657–1680 (2021). https://doi.org/10.1007/s12541-021-00565-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-021-00565-3

Keywords

Navigation