Skip to main content
Log in

An efficient force-feedback hand exoskeleton for haptic applications

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

In this paper, a study on wearable exoskeleton devices which are capable of delivering sensation to the fingers while interacting with the virtual objects in virtual reality environment has been conducted. A force-controllable hand exoskeleton system is proposed, which is able to apply force feedback to the fingertip while allowing natural finger motions. The linkage structure was inspired by the skeletal structure of a human finger. Moreover, a series elastic actuator (SEA) mechanism, which consisted of a linear motor, a spring and a potentiometer, was presented as an actuating system. The force transmission through linkage has been investigated to ensure the force feedback ability at the fingertip. By using a PID controller, the proposed actuator module could generate the desired force in two different modes: free mode and interaction mode. The experimental results show that the proposed system could effectively deliver forces to the fingertips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Astin, A.D.D.: Finger force capability: measurement and prediction using anthropometric and myoelectric measures. M.S Thesis, Virginia Polytechnic Institute and State University (1999)

  • Blake, J., Gurocak, H.B.: Haptic glove with MR brakes for virtual reality. IEEE/ASME Trans. Mechatron. 14(5), 606–15 (2009)

    Article  Google Scholar 

  • Bouzit, M., et al.: The Rutgers Master II-new design force-feedback glove. IEEE/ASME Trans. Mechatron. 7(2), 256–263 (2002)

    Article  Google Scholar 

  • Chinello, F., Malvezzi, M., Pacchierotti, C., Prattichizzo, D.: Design and development of a 3RRS wearable fingertip cutaneous device. In: Proc. IEEE/ASME Int. Conf. on Advanced Intelligent Mechatronics, pp. 293–298 (2015)

  • CyberGlove Systems LLC.: CyberGrasp System User Guide v2.0. San Jose (2007). http://www.cyberglovesystems.com/cybergrasp/. Accessed 20 May 2017

  • Festo, A.G., Co. KG.: ExoHand. Esslingen, Germany (2012). https://www.festo.com/group. Accessed 15 Apr 2017

  • Fontana, M., Dettori, A., Salsedo, F., Bergamasco, M.: Mechanical design of a novel hand exoskeleton for accurate force displaying. IEEE Int. Conf. Robot. Autom. (ICRA) 2009, 1704–9 (2009)

    Google Scholar 

  • Gabardi, M., Solazzi, M., Leonardis, D., Frisoli, A.: A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: Proc. IEEE Haptics Symposium, pp. 140–146 (2016)

  • Gu, X.: Dexmo—an inexpensive and lightweight mechanical exoskeleton for motion capture and force feedback in VR. In: Proceedings of the 34th ACM Conference on Human Factors in Computing Systems (CHI 2016), pp. 1991–1995 (2016)

  • Hume, M., Gellman, H., McKellop, H., Brumfield, R.: Functional range of motion of the joints of the hand. J. Hand Surg. Am. 15(2), 240–3 (1990)

    Article  Google Scholar 

  • In, H., Cho, K., Kim, K., Lee, B.: Jointless structure and under-actuation mechanism for compact hand exoskeleton. In: IEEE International Conference on Rehabilitation Robotics (ICORR), pp. 1–6 (2016)

  • Kajimoto, H., et al.: Electro-tactile display with tactile primary color approach. Graduate School of Information and Technology, The University of Tokyo (2004)

  • Khatib, O., Siciliano, B.: Springer Handbook of Robotics, Chap. 30. Springer, Berlin (2008)

  • Ma, Z., Ben-Tzvi, P.: Design and optimization of a five-finger haptic glove mechanism. ASME. J. Mech. Robot. 7(4), 041008 (2015)

    Article  Google Scholar 

  • Ma, Z., Ben-Tzvi, P.: RML glove—an exoskeleton glove mechanism with haptics feedback. IEEE/ASME Trans. Mechatron. 20(2), 641–652 (2015)

    Article  Google Scholar 

  • Neumann, D., Rowan, E.: Kinesiology of the Musculoskeletal System: Foundations for Physical Rehabilitation. Mosby, Philadelphia (2002)

    Google Scholar 

  • Pratt, J., Krupp, B., Morse, C.: Series elastic actuators for high fidelity force control. Ind. Robot 29(3), 234–241 (2002)

    Article  Google Scholar 

  • Redmond, B., Aina, R., Gorti, T., Hannaford, B.: Haptic characteristics of some activities of daily living. In: IEEE Haptics Symposium, pp. 71–76 (2010)

  • Sato, K., et al.: Haptic telexistence. In: ACM SIGGRAPH 2007 Emerging Technologies, p. 10. ACM (2007)

  • Winter, S.H.: Use of magnetorheological fluid in a force feedback glove. IEEE Trans. Neural Syst. Rehabilit. Eng. 15(1), 2–8 (2007)

    Article  Google Scholar 

  • Won, S.H.P., Melek, W.W., Golnaraghi, F.: A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system. IEEE Trans. Ind. Electron. 57(5), 1787–1798 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linh Nguyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, D.T.G., Nguyen, L. An efficient force-feedback hand exoskeleton for haptic applications. Int J Intell Robot Appl 5, 395–409 (2021). https://doi.org/10.1007/s41315-021-00197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-021-00197-w

Keywords

Navigation