Skip to main content

Advertisement

Log in

Echocardiography in Women: How Are Mars and Venus Different?

  • Echocardiography (JM Gardin and AH Waller, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Sex is an important determinant of cardiac structure and function. We review key sex differences in universal echocardiographic parameters and discuss the clinical implications of using sex-specific algorithms to increase the diagnostic accuracy of echocardiography and improve the timely treatment of common cardiovascular disorders, and the unique role of echocardiography in pregnancy and the evaluation of ischemic heart disease.

Recent Findings

Emerging echocardiographic findings have begun to define important sex-based differences in chamber size and ventricular function. We advocate for additional research and the consideration of sex-specific algorithms in future expert consensus guidelines for the diagnosis and treatment of valvular heart disease, heart failure, and thoracic aortic disease.

Summary

Echocardiography is an essential diagnostic tool in our armamentarium of imaging modalities for the sex-specific diagnosis and guidance of treatment for a broad spectrum of cardiovascular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gray J. Men are from Mars, women are from Venus : a practical guide for improving communication and getting what you want in your relationships: First edition. New York, NY : HarperCollins, (1992).

  2. Beale AL, Meyer P, Marwick TH, Lam CSP, Kaye DM. Sex differences in cardiovascular pathophysiology. Circulation. 2018;138(2):198–205.

    Article  Google Scholar 

  3. Gori M, Lam CS, Gupta DK, Santos AB, Cheng S, Shah AM, et al. Sex-specific cardiovascular structure and function in heart failure with preserved ejection fraction. Eur J Heart Fail. 2014;16(5):535–42.

    Article  Google Scholar 

  4. Honigberg MC, Zekavat SM, Aragam K, Klarin D, Bhatt DL, Scott NS, et al. Long-term cardiovascular risk in women with hypertension during pregnancy. J Am Coll Cardiol. 2019;74(22):2743–54.

    Article  Google Scholar 

  5. Lam CSP, Arnott C, Beale AL, Chandramouli C, Hilfiker-Kleiner D, Kaye DM, et al. Sex differences in heart failure. Eur Heart J. 2019;40(47):3859–68c.

    Article  Google Scholar 

  6. •• Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28(1):1–39.e14. Most recent update of the American Society of Echocardiography (ASE) guidelines for quantification of cardiac structure and function including sex-specific normative values.

  7. Kou S, Caballero L, Dulgheru R, Voilliot D, De Sousa C, Kacharava G, et al. Echocardiographic reference ranges for normal cardiac chamber size: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2014;15(6):680–90.

  8. Echocardiographic Normal Ranges Meta-Analysis of the Left heart (EchoNoRMAL) Collaboration. A meta-analysis of echocardiographic measurements of the left heart for the development of normative reference ranges in a large international cohort: the EchoNoRMAL study. Eur Heart J Cardiovasc Imaging. 2014;15(3):341–348.

  9. Collaboration TENRM-AotLhE. Ethnic-specific normative reference values for echocardiographic LA and LV size, LV mass, and systolic function: the EchoNoRMAL Study. J Am Coll Cardiol Img. 2015;8(6):656–65.

    Article  Google Scholar 

  10. •• Asch FM, Miyoshi T, Addetia K, Citro R, Daimon M, Desale S, et al. Similarities and differences in left ventricular size and function among races and nationalities: results of the World Alliance Societies of Echocardiography Normal Values Study. J Am Soc Echocardiogr. 2019;32(11):1396–406.e2 Landmark international study defining sex, race, and ethnicity-specific normal echocardiographic values of cardiac structure and function.

  11. Asch FM, Banchs J, Price R, Rigolin V, Thomas JD, Weissman NJ, et al. Need for a global definition of normative echo values-rationale and design of the World Alliance of Societies of Echocardiography Normal Values Study (WASE). J Am Soc Echocardiogr. 2019;32(1):157–62.e2.

  12. Hung CL, Gonçalves A, Shah AM, Cheng S, Kitzman D, Solomon SD. Age- and sex-related influences on left ventricular mechanics in elderly individuals free of prevalent heart failure: the ARIC Study (Atherosclerosis Risk in Communities). Circ Cardiovasc Imaging. 2017;10(1):e004510.

  13. Sugimoto T, Dulgheru R, Bernard A, Ilardi F, Contu L, Addetia K, et al. Echocardiographic reference ranges for normal left ventricular 2D strain: results from the EACVI NORRE study. Eur Heart J Cardiovasc Imaging. 2017;18(8):833–40.

    Article  Google Scholar 

  14. Nagata Y, Wu VC, Otsuji Y, Takeuchi M. Normal range of myocardial layer-specific strain using two-dimensional speckle tracking echocardiography. PLoS One. 2017;12(6):e0180584.

    Article  Google Scholar 

  15. •• Otto CM, Nishimura RA, Bonow RO, Carabello BA, Erwin JP 3rd, Gentile F, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2020:Cir0000000000000923 Most recent update of the American College of Cardiology (ACC)/American Heart Association (AHA) guidelines on the diagnosis and treatment of valvular heart disease inclusive of sex-specific cutoffs and thresholds for intervention.

  16. Pibarot P, Dumesnil JG. Low-flow, low-gradient aortic stenosis with normal and depressed left ventricular ejection fraction. J Am Coll Cardiol. 2012;60(19):1845–53.

    Article  Google Scholar 

  17. Klodas E, Enriquez-Sarano M, Tajik AJ, Mullany CJ, Bailey KR, Seward JB. Surgery for aortic regurgitation in women. Circulation. 1996;94(10):2472–8.

    Article  CAS  Google Scholar 

  18. Vassileva CM, Stelle LM, Markwell S, Boley T, Hazelrigg S. Sex differences in procedure selection and outcomes of patients undergoing mitral valve surgery. Heart Surg Forum. 2011;14(5):E276–82.

  19. Avierinos JF, Inamo J, Grigioni F, Gersh B, Shub C, Enriquez-Sarano M. Sex differences in morphology and outcomes of mitral valve prolapse. Ann Intern Med. 2008;149(11):787–95.

    Article  Google Scholar 

  20. • Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 2016;29(4):277–314 American Society of Echocardiography (ASE) guidelines for the determination of diastolic function.

  21. Benjamin EJ, Levy D, Anderson KM, Wolf PA, Plehn JF, Evans JC, et al. Determinants of Doppler indexes of left ventricular diastolic function in normal subjects (the Framingham Heart Study). Am J Cardiol. 1992;70(4):508–15.

    Article  CAS  Google Scholar 

  22. Caballero L, Kou S, Dulgheru R, Gonjilashvili N, Athanassopoulos GD, Barone D, et al. Echocardiographic reference ranges for normal cardiac Doppler data: results from the NORRE study. Eur Heart J Cardiovasc Imaging. 2015;16(9):1031–41.

    PubMed  Google Scholar 

  23. Miyoshi T, Addetia K, Citro R, Daimon M, Desale S, Fajardo PG, et al. Left ventricular diastolic function in healthy adult individuals: results of the World Alliance Societies of Echocardiography Normal Values Study. J Am Soc Echocardiogr 2020;33(10):1223–33.

  24. Maffessanti F, Muraru D, Esposito R, Gripari P, Ermacora D, Santoro C, et al. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: a multicenter echocardiographic study in 507 healthy volunteers. Circ Cardiovasc Imaging. 2013;6(5):700–10.

  25. • Bossone E, D’Andrea A, D’Alto M, Citro R, Argiento P, Ferrara F, et al. Echocardiography in pulmonary arterial hypertension: from diagnosis to prognosis. J Am Soc Echocardiogr. 2013;26(1):1–14 American Society of Echocardiography (ASE) guidelines for the determination of diastolic function.

  26. Ventetuolo CE, Ouyang P, Bluemke DA, Tandri H, Barr RG, Bagiella E, et al. Sex hormones are associated with right ventricular structure and function: the MESA-right ventricle study. Am J Respir Crit Care Med. 2011;183(5):659–67.

    Article  Google Scholar 

  27. Hemnes AR, Maynard KB, Champion HC, Gleaves L, Penner N, West J, et al. Testosterone negatively regulates right ventricular load stress responses in mice. Pulm Circ. 2012;2(3):352–8.

  28. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association: developed in collaboration with the American College of Chest Physicians, American Thoracic Society, Inc., and the Pulmonary Hypertension Association. Circulation. 2009;119(16):2250–94.

    Article  Google Scholar 

  29. •• Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, Blomström-Lundqvist C, Cífková R, De Bonis M, et al. 2018 ESC guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241 Most recent European Society of Cardiology (ESC) guidelines on cardiovascular disease in pregnancy.

    Article  Google Scholar 

  30. Vasan RS, Larson MG, Levy D. Determinants of echocardiographic aortic root size. Circulation. 1995;91(3):734–40.

    Article  CAS  Google Scholar 

  31. Biaggi P, Matthews F, Braun J, Rousson V, Kaufmann PA, Jenni R. Gender, age, and body surface area are the major determinants of ascending aorta dimensions in subjects with apparently normal echocardiograms. J Am Soc Echocardiogr. 2009;22(6):720–5.

  32. Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64(8):507–12.

    Article  CAS  Google Scholar 

  33. • Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. Circulation. 2010;121(13):e266–369 International, multi-society guidelines on the diagnosis of thoracic aortic disease including the role of echocardiography and sex-specific considerations in diagnosis and treatment.

    PubMed  Google Scholar 

  34. Zafar MA, Li Y, Rizzo JA, Charilaou P, Saeyeldin A, Velasquez CA, et al. Height alone, rather than body surface area, suffices for risk estimation in ascending aortic aneurysm. J Thorac Cardiovasc Surg. 2018;155(5):1938–50.

    Article  Google Scholar 

  35. Boczar KE, Cheung K, Boodhwani M, Beauchesne L, Dennie C, Nagpal S, et al. Sex differences in thoracic aortic aneurysm growth. Hypertension. 2019;73(1):190–6.

    Article  CAS  Google Scholar 

  36. Davies RR, Goldstein LJ, Coady MA, Tittle SL, Rizzo JA, Kopf GS, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73(1):17–27 discussion -8.

    Article  Google Scholar 

  37. Cheung K, Boodhwani M, Chan KL, Beauchesne L, Dick A, Coutinho T. Thoracic aortic aneurysm growth: role of sex and aneurysm etiology. J Am Heart Assoc. 2017;6(2):e003792.

  38. Braverman AC, Mittauer E, Harris KM, Evangelista A, Pyeritz RE, Brinster D, et al. Clinical features and outcomes of pregnancy-related acute aortic dissection. JAMA Cardiol. 2021;6(1):58–66.

    PubMed  Google Scholar 

  39. Sadaniantz A, Kocheril AG, Emaus SP, Garber CE, Parisi AF. Cardiovascular changes in pregnancy evaluated by two-dimensional and Doppler echocardiography. J Am Soc Echocardiogr. 1992;5(3):253–8.

  40. Mesa A, Jessurun C, Hernandez A, Adam K, Brown D, Vaughn WK, et al. Left ventricular diastolic function in normal human pregnancy. Circulation. 1999;99(4):511–7.

    Article  CAS  Google Scholar 

  41. Elkayam U, Bitar F. Valvular heart disease and pregnancy: part II: prosthetic valves. J Am Coll Cardiol. 2005;46(3):403–10.

    Article  Google Scholar 

  42. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Preeclampsia is associated with persistent postpartum cardiovascular impairment. Hypertension. 2011;58(4):709–15.

    Article  CAS  Google Scholar 

  43. Rafik Hamad R, Larsson A, Pernow J, Bremme K, Eriksson MJ. Assessment of left ventricular structure and function in preeclampsia by echocardiography and cardiovascular biomarkers. J Hypertens. 2009;27(11):2257–64.

    Article  Google Scholar 

  44. Davis MB, Arany Z, McNamara DM, Goland S, Elkayam U. Peripartum cardiomyopathy: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(2):207–21.

    Article  CAS  Google Scholar 

  45. Beyer SE, Dicks AB, Shainker SA, Feinberg L, Schermerhorn ML, Secemsky EA, et al. Pregnancy-associated arterial dissections: a nationwide cohort study. Eur Heart J. 2020;41(44):4234–42.

    Article  Google Scholar 

  46. Taqueti VR, Dorbala S, Wolinsky D, Abbott B, Heller GV, Bateman TM, et al. Myocardial perfusion imaging in women for the evaluation of stable ischemic heart disease-state-of-the-evidence and clinical recommendations. J Nucl Cardiol. 2017;24(4):1402–26.

  47. • Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease. Circulation. 2012;126(25):e354–471 Multi-society guidelines on the diagnosis of ischemic heart disease including the role of stress echocardiography and the effect of sex on different diagnostic modalities.

    PubMed  Google Scholar 

  48. Dolor RJ, Patel MR, Melloni C, Chatterjee R, McBroom AJ, Musty MD, et al. AHRQ comparative effectiveness reviews. Noninvasive technologies for the diagnosis of coronary artery disease in women. Rockville (MD): Agency for Healthcare Research and Quality (US); 2012.

  49. Kohli P, Gulati M. Exercise stress testing in women: going back to the basics. Circulation. 2010;122(24):2570–80.

    Article  Google Scholar 

  50. Gulati M, Shaw LJ, Bairey Merz CN. Myocardial ischemia in women: lessons from the NHLBI WISE study. Clin Cardiol. 2012;35(3):141–8.

    Article  Google Scholar 

  51. Arruda-Olson AM, Juracan EM, Mahoney DW, McCully RB, Roger VL, Pellikka PA. Prognostic value of exercise echocardiography in 5,798 patients: is there a gender difference? J Am Coll Cardiol. 2002;39(4):625–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malissa J. Wood.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Echocardiography

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crousillat, D.R., Wood, M.J. Echocardiography in Women: How Are Mars and Venus Different?. Curr Cardiol Rep 23, 149 (2021). https://doi.org/10.1007/s11886-021-01562-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01562-8

Keywords

Navigation