Skip to main content

Advertisement

Log in

DNMT1-Induced miR-152-3p Suppression Facilitates Cardiac Fibroblast Activation in Cardiac Fibrosis

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Novel insights into epigenetic control of cardiac fibrosis are now emerging. Cardiac fibroblasts (CFs) activation into myofibroblasts and the production of extracellular matrix (ECM) is the key to cardiac fibrosis development, but the specific mechanism is not fully understood. In the present study, we found that DNMT1 hypermethylation reduces the expression of microRNA-152-3p (miR-152-3p) and promotes Wnt1/β-catenin signaling pathway leading to CFs proliferation and activation. Cardiac fibrosis was produced by ISO, and the ISO was carried out according to the method described. CFs were harvested and cultured from SD neonatal rats and stimulated with TGF-β1. Importantly, DNMT1 resulted in the inhibition of miR-152-3p in activated CFs and both DNMT1 and miR-152-3p altered Wnt/β-catenin downstream protein levels. Over expression of DNMT1 and miR-152-3p inhibitors promotes proliferation of activating CFs. In addition, decreased methylation levels and over expression of miR-152-3p inhibited CFs proliferation. We determined that DNMT1 can methylate to miR-152-3p and demonstrated that expression of miR-152-3p inhibits CFs proliferation by inhibiting the Wnt1/β-catenin pathway. Our results stand out together DNMT1 methylation regulates miR-152-3p to slow the progression of cardiac fibrosis by inhibiting the Wnt1/β-catenin pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Russo, I., Cavalera, M., Huang, S., Su, Y., Hanna, A., Chen, B., Shinde, A. V., Conway, S. J., Graff, J., & Frangogiannis, N. G. (2019). Protective effects of activated myofibroblasts in the pressure-overloaded myocardium are mediated through smad-dependent activation of a matrix-preserving program. Circulation Research, 124, 1214–1227.

    Article  CAS  Google Scholar 

  2. Aghajanian, H., Kimura, T., Rurik, J. G., Hancock, A. S., Leibowitz, M. S., Li, L., Scholler, J., Monslow, J., Lo, A., Han, W., Wang, T., Bedi, K., Morley, M. P., Linares Saldana, R. A., Bolar, N. A., McDaid, K., Assenmacher, C. A., Smith, C. L., Wirth, D., … Epstein, J. A. (2019). Targeting cardiac fibrosis with engineered T cells. Nature, 573, 430–433.

    Article  CAS  Google Scholar 

  3. Nagaraju, C. K., Robinson, E. L., Abdesselem, M., Trenson, S., Dries, E., Gilbert, G., Janssens, S., Van Cleemput, J., Rega, F., Meyns, B., Roderick, H. L., Driesen, R. B., & Sipido, K. R. (2019). Myofibroblast phenotype and reversibility of fibrosis in patients with end-stage heart failure. Journal of the American College of Cardiology, 73, 2267–2282.

    Article  Google Scholar 

  4. Villalobos, E., Criollo, A., Schiattarella, G. G., Altamirano, F., French, K. M., May, H. I., Jiang, N., Nguyen, N. U. N., Romero, D., Roa, J. C., Garcia, L., Diaz-Araya, G., Morselli, E., Ferdous, A., Conway, S. J., Sadek, H. A., Gillette, T. G., Lavandero, S., & Hill, J. A. (2019). Fibroblast primary cilia are required for cardiac fibrosis. Circulation, 139, 2342–2357.

    Article  CAS  Google Scholar 

  5. Friebel, J., Weithauser, A., Witkowski, M., Rauch, B. H., Savvatis, K., Dorner, A., Tabaraie, T., Kasner, M., Moos, V., Bosel, D., Gotthardt, M., Radke, M. H., Wegner, M., Bobbert, P., Lassner, D., Tschope, C., Schutheiss, H. P., Felix, S. B., Landmesser, U., & Rauch, U. (2019). Protease-activated receptor 2 deficiency mediates cardiac fibrosis and diastolic dysfunction. European Heart Journal. https://doi.org/10.1093/eurheartj/ehz117

    Article  PubMed  Google Scholar 

  6. Rodriguez, P., Sassi, Y., Troncone, L., Benard, L., Ishikawa, K., Gordon, R. E., Lamas, S., Laborda, J., Hajjar, R. J., & Lebeche, D. (2019). Deletion of delta-like 1 homologue accelerates fibroblast-myofibroblast differentiation and induces myocardial fibrosis. European heart journal, 40, 967–978.

    Article  CAS  Google Scholar 

  7. Liu, Q., Zhu, L. J., Waaga-Gasser, A. M., Ding, Y., Cao, M., Jadhav, S. J., Kirollos, S., Shekar, P. S., Padera, R. F., Chang, Y. C., Xu, X., Zeisberg, E. M., Charytan, D. M., & Hsiao, L. L. (2019). The axis of local cardiac endogenous Klotho-TGF-beta1-Wnt signaling mediates cardiac fibrosis in human. Journal of Molecular and Cellular Cardiology, 136, 113–124.

    Article  CAS  Google Scholar 

  8. Zhong, A., Mirzaei, Z., & Simmons, C. A. (2018). The roles of matrix stiffness and ss-catenin signaling in endothelial-to-mesenchymal transition of aortic valve endothelial cells. Cardiovascular Engineering and Technology, 9, 158–167.

    Article  Google Scholar 

  9. Gabisonia, K., Prosdocimo, G., Aquaro, G. D., Carlucci, L., Zentilin, L., Secco, I., Ali, H., Braga, L., Gorgodze, N., Bernini, F., Burchielli, S., Collesi, C., Zandona, L., Sinagra, G., Piacenti, M., Zacchigna, S., Bussani, R., Recchia, F. A., & Giacca, M. (2019). MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature, 569, 418–422.

    Article  CAS  Google Scholar 

  10. Huang, W., Feng, Y., Liang, J., Yu, H., Wang, C., Wang, B., Wang, M., Jiang, L., Meng, W., Cai, W., Medvedovic, M., Chen, J., Paul, C., Davidson, W. S., Sadayappan, S., Stambrook, P. J., Yu, X. Y., & Wang, Y. (2018). Loss of microRNA-128 promotes cardiomyocyte proliferation and heart regeneration. Nature Communications, 9, 700.

    Article  Google Scholar 

  11. Nishiga, M., Horie, T., Kuwabara, Y., Nagao, K., Baba, O., Nakao, T., Nishino, T., Hakuno, D., Nakashima, Y., Nishi, H., Nakazeki, F., Ide, Y., Koyama, S., Kimura, M., Hanada, R., Nakamura, T., Inada, T., Hasegawa, K., Conway, S. J., … Ono, K. (2017). MicroRNA-33 controls adaptive fibrotic response in the remodeling heart by preserving lipid raft cholesterol. Circulation Research, 120, 835–847.

    Article  CAS  Google Scholar 

  12. Wang, B., Zhang, A., Wang, H., Klein, J. D., Tan, L., Wang, Z. M., Du, J., Naqvi, N., Liu, B. C., & Wang, X. H. (2019). miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics, 9, 1864–1877.

    Article  CAS  Google Scholar 

  13. Zeng, K., He, B., Yang, B. B., Xu, T., Chen, X., Xu, M., Liu, X., Sun, H., Pan, Y., & Wang, S. (2018). The pro-metastasis effect of circANKS1B in breast cancer. Molecular Cancer, 17, 160.

    Article  CAS  Google Scholar 

  14. Yin, S., Zhang, Q., Yang, J., Lin, W., Li, Y., Chen, F., & Cao, W. (1864). TGFbeta-incurred epigenetic aberrations of miRNA and DNA methyltransferase suppress Klotho and potentiate renal fibrosis, Biochimica et biophysica acta. Molecular Cell Research, 2017, 1207–1216.

    Google Scholar 

  15. Yu, F., Lu, Z., Chen, B., Wu, X., Dong, P., & Zheng, J. (2015). Salvianolic acid B-induced microRNA-152 inhibits liver fibrosis by attenuating DNMT1-mediated Patched1 methylation. Journal of Cellular and Molecular Medicine, 19, 2617–2632.

    Article  CAS  Google Scholar 

  16. Xu, X., Tan, X., Tampe, B., Wilhelmi, T., Hulshoff, M. S., Saito, S., Moser, T., Kalluri, R., Hasenfuss, G., Zeisberg, E. M., & Zeisberg, M. (2018). High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nature Communications, 9, 3509.

    Article  Google Scholar 

  17. Tao, H., Dai, C., Ding, J. F., Yang, J. J., Ding, X. S., Xu, S. S., & Shi, K. H. (2018). Epigenetic aberrations of miR-369-5p and DNMT3A control Patched1 signal pathway in cardiac fibrosis. Toxicology, 410, 182–192.

    Article  CAS  Google Scholar 

  18. Tao, H., Song, Z. Y., Ding, X. S., Yang, J. J., Shi, K. H., & Li, J. (2018). Epigenetic signatures in cardiac fibrosis, special emphasis on DNA methylation and histone modification. Heart Failure Reviews, 23, 789–799.

    Article  CAS  Google Scholar 

  19. Weinberg, D. N., Papillon-Cavanagh, S., Chen, H., Yue, Y., Chen, X., Rajagopalan, K. N., Horth, C., McGuire, J. T., Xu, X., Nikbakht, H., Lemiesz, A. E., Marchione, D. M., Marunde, M. R., Meiners, M. J., Cheek, M. A., Keogh, M. C., Bareke, E., Djedid, A., Harutyunyan, A. S., … Lu, C. (2019). The histone mark H3K36me2 recruits DNMT3A and shapes the intergenic DNA methylation landscape. Nature, 573, 281–286.

    Article  CAS  Google Scholar 

  20. Heyn, P., Logan, C. V., Fluteau, A., Challis, R. C., Auchynnikava, T., Martin, C. A., Marsh, J. A., Taglini, F., Kilanowski, F., Parry, D. A., Cormier-Daire, V., Fong, C. T., Gibson, K., Hwa, V., Ibanez, L., Robertson, S. P., Sebastiani, G., Rappsilber, J., Allshire, R. C., … Jackson, A. P. (2019). Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nature Genetics, 51, 96–105.

    Article  CAS  Google Scholar 

  21. Li, Y., Zhang, Z., Chen, J., Liu, W., Lai, W., Liu, B., Li, X., Liu, L., Xu, S., Dong, Q., Wang, M., Duan, X., Tan, J., Zheng, Y., Zhang, P., Fan, G., Wong, J., Xu, G. L., Wang, Z., … Zhu, B. (2018). Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature, 564, 136–140.

    Article  CAS  Google Scholar 

  22. Hu, H., Jiang, M., Cao, Y., Zhang, Z., Jiang, B., Tian, F., Feng, J., Dou, Y., Gorospe, M., Zheng, M., Zheng, L., Yang, Z., & Wang, W. (2019). HuR regulates phospholamban expression in isoproterenol-induced cardiac remodeling. Cardiovascular Research. https://doi.org/10.1093/cvr/cvz205

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shanmugam, G., Challa, A. K., Litovsky, S. H., Devarajan, A., Wang, D., Jones, D. P., Darley-Usmar, V. M., & Rajasekaran, N. S. (2019). Enhanced Keap1-Nrf2 signaling protects the myocardium from isoproterenol-induced pathological remodeling in mice. Redox Biology. https://doi.org/10.1016/j.redox.2019.101212

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shih, Y. C., Chen, C. L., Zhang, Y., Mellor, R. L., Kanter, E. M., Fang, Y., Wang, H. C., Hung, C. T., Nong, J. Y., Chen, H. J., Lee, T. H., Tseng, Y. S., Chen, C. N., Wu, C. C., Lin, S. L., Yamada, K. A., Nerbonne, J. M., & Yang, K. C. (2018). Endoplasmic reticulum protein TXNDC5 augments myocardial fibrosis by facilitating extracellular matrix protein folding and redox-sensitive cardiac fibroblast activation. Circulation Research, 122, 1052–1068.

    Article  CAS  Google Scholar 

  25. Ma, Y., Iyer, R. P., Jung, M., Czubryt, M. P., & Lindsey, M. L. (2017). Cardiac fibroblast activation post-myocardial infarction: current knowledge gaps. Trends in pharmacological sciences, 38, 448–458.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (82170236), Key research and development projects of Anhui Province (202104j07020037), and Natural Science Foundation of Anhui Provincial (1808085MH231) and National Natural Science Foundation Incubation Program of the Second Affiliated Hospital of Anhui Medical University (2020GMFY02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai-Hu Shi or Hui Tao.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the Review Board of Anhui Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Handling Editor: Lorraine Chalifour.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 1141 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, SS., Ding, JF., Shi, P. et al. DNMT1-Induced miR-152-3p Suppression Facilitates Cardiac Fibroblast Activation in Cardiac Fibrosis. Cardiovasc Toxicol 21, 984–999 (2021). https://doi.org/10.1007/s12012-021-09690-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-021-09690-x

Keywords

Navigation