Skip to main content

Advertisement

Log in

Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Paeoniflorin is an active ingredient derived from Paeonia, which has an anti-inflammatory effect. However, the potential role and basis of paeoniflorin in rheumatoid arthritis (RA) are indistinct. Cell viability, cycle distribution, migration, and invasion were evaluated via Cell Counting Kit-8 (CCK-8), flow cytometry, and transwell assays. The contents of inflammatory cytokines were examined using enzyme-linked immunosorbent assay (ELISA). RNA expression levels were determined via qRT-PCR and western blot. The targeting relationship between miR-671-5p and circ-FAM120A (hsa_circ_0003972) or murine double minute 4 (MDM4) was validated via dual-luciferase reporter assay. Paeoniflorin restrained proliferation, migration, invasion, and inflammation and accelerated cell cycle arrest in RA fibroblast–like synoviocytes (RA-FLSs). Circ-FAM120A was boosted in RA synovial tissues and RA-FLSs. Circ-FAM120A upregulation, miR-671-5p knockdown, or MDM4 augmentation reversed the repressive effect of paeoniflorin on RA-FLS progression. Moreover, paeoniflorin attenuated RA-FLS progression by regulating the circ-FAM120A/miR-671-5p/MDM4 axis. Paeoniflorin inhibited RA-FLS proliferation, mobility, and inflammation and triggered cell cycle arrest via mediating the circ-FAM120A/miR-671-5p/MDM4 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are available on request from the corresponding author.

References

  1. Sparks JA. Rheumatoid arthritis[J]. Ann Intern Med 2019,170(1): ITC1-ITC16.

  2. Aletaha, D., and J.S. Smolen. 2018. Diagnosis and management of rheumatoid arthritis: A Review[J]. JAMA 320 (13): 1360–1372.

    Article  Google Scholar 

  3. Nygaard, G., and G.S. Firestein. 2020. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes[J]. Nature Reviews Rheumatology 16 (6): 316–333.

    Article  Google Scholar 

  4. Yoshitomi, H. 2019. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes[J]. Frontiers in Immunology 10: 1395.

    Article  CAS  Google Scholar 

  5. Zhang, L., and W. Wei. 2020. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther 207: 107452.

  6. Zhang, L., J. Yu, C. Wang, et al. 2019. The effects of total glucosides of paeony (TGP) and paeoniflorin (Pae) on inflammatory-immune responses in rheumatoid arthritis (RA)[J]. Functional Plant Biology 46 (2): 107–117.

    Article  CAS  Google Scholar 

  7. Zhai, W., Z. Ma, W. Wang, et al. 2018. Paeoniflorin inhibits Rho kinase activation in joint synovial tissues of rats with collagen-induced rheumatoid arthritis[J]. Biomedicine & Pharmacotherapy 106: 255–259.

    Article  CAS  Google Scholar 

  8. Kristensen, L.S., M.S. Andersen, L.V.W. Stagsted, et al. 2019. The biogenesis, biology and characterization of circular RNAs[J]. Nature Reviews Genetics 20 (11): 675–691.

    Article  CAS  Google Scholar 

  9. Zhou, Z., B. Sun, S. Huang, et al. 2019. Roles of circular RNAs in immune regulation and autoimmune diseases[J]. Cell Death & Disease 10 (7): 503.

    Article  Google Scholar 

  10. Yang, X., J. Li, Y. Wu, et al. 2019. Aberrant dysregulated circular RNAs in the peripheral blood mononuclear cells of patients with rheumatoid arthritis revealed by RNA sequencing: Novel diagnostic markers for RA[J]. Scandinavian Journal of Clinical and Laboratory Investigation 79 (8): 551–559.

    Article  CAS  Google Scholar 

  11. Wen, J., J. Liu, P. Zhang, et al. 2020. RNA-seq reveals the circular RNA and miRNA expression profile of peripheral blood mononuclear cells in patients with rheumatoid arthritis[J]. Biosci Rep 40 (4).

  12. Chen, X., T. Yang, W. Wang, et al. 2019. Circular RNAs in immune responses and immune diseases[J]. Theranostics 9 (2): 588–607.

    Article  CAS  Google Scholar 

  13. Evangelatos, G., G.E. Fragoulis, V. Koulouri, et al. 2019. MicroRNAs in rheumatoid arthritis: from pathogenesis to clinical impact[J]. Autoimmun Rev 18 (11): 102391.

  14. Zhang, C., L. Fang, X. Liu, et al. 2020. miR-22 inhibits synovial fibroblasts proliferation and proinflammatory cytokine production in RASF via targeting SIRT1[J]. Gene 724: 144144.

  15. Wang, Y., T. Jiao, W. Fu, et al. (2019) miR-410–3p regulates proliferation and apoptosis of fibroblast-like synoviocytes by targeting YY1 in rheumatoid arthritis[J]. Biomed Pharmacother 119: 109426.

  16. Samarpita, S., J.Y. Kim, M.K. Rasool, et al. 2020. Investigation of toll-like receptor (TLR) 4 inhibitor TAK-242 as a new potential anti-rheumatoid arthritis drug[J]. Arthritis Res Ther (in eng) 22 (1): 16.

    Article  CAS  Google Scholar 

  17. Erlandsson, M.C., S. Töyrä Silfverswärd, M. Nadali, et al. 2017. IGF-1R signalling contributes to IL-6 production and T cell dependent inflammation in rheumatoid arthritis[J]. Biochim Biophys Acta Mol Basis Dis (in eng) 1863 (9): 2158–2170.

    Article  CAS  Google Scholar 

  18. Hou, C., D. Wang, and L. Zhang. 2019. MicroRNA-34a-3p inhibits proliferation of rheumatoid arthritis fibroblast-like synoviocytes[J]. Mol Med Rep (in eng) 20 (3): 2563–2570.

    CAS  Google Scholar 

  19. Tristano, A.G. 2009. Tyrosine kinases as targets in rheumatoid arthritis[J]. International Immunopharmacology 9 (1): 1–9.

    Article  CAS  Google Scholar 

  20. Korb-Pap, A., J. Bertrand, J. Sherwood, et al. 2016. Stable activation of fibroblasts in rheumatic arthritis-causes and consequences[J]. Rheumatology (Oxford) 55(suppl 2): ii64-ii67.

  21. Guo, Q., S. Zhang, J. Huang, et al. 2020. Alogliptin inhibits IL-1beta-induced inflammatory response in fibroblast-like synoviocytes[J]. Int Immunopharmacol 83: 106372.

  22. Xin, Q., R. Yuan, W. Shi, et al. 2019. A review for the anti-inflammatory effects of paeoniflorin in inflammatory disorders[J]. Life Sci 237: 116925.

  23. Yang, L., J. Fu, and Y. Zhou. 2018. Circular RNAs and their emerging roles in immune regulation[J]. Frontiers in Immunology 9: 2977.

    Article  CAS  Google Scholar 

  24. Xia, X., X. Tang, and S. Wang. 2019. Roles of circRNAs in autoimmune diseases[J]. Frontiers in Immunology 10: 639.

    Article  CAS  Google Scholar 

  25. Li, G., W. Tan, Y. Fang, et al. 2019. circFADS2 protects LPS-treated chondrocytes from apoptosis acting as an interceptor of miR-498/mTOR cross-talking[J]. Aging (Albany NY) 11 (10): 3348–3361.

    Article  CAS  Google Scholar 

  26. Li, B., N. Li, L. Zhang, et al. 2018. Hsa_circ_0001859 regulates ATF2 expression by functioning as an MiR-204/211 sponge in human rheumatoid arthritis[J]. Journal of Immunology Research 2018: 9412387.

    PubMed  PubMed Central  Google Scholar 

  27. Ng, W.L., T.B. Mohd Mohidin, and K. Shukla. 2018. Functional role of circular RNAs in cancer development and progression[J]. RNA Biology 15 (8): 995–1005.

    PubMed  PubMed Central  Google Scholar 

  28. Xin, C., S. Lu, Y. Li, et al. 2019. miR-671-5p inhibits tumor proliferation by blocking cell cycle in osteosarcoma[J]. DNA and Cell Biology 38 (9): 996–1004.

    Article  CAS  Google Scholar 

  29. Qiu, T., K. Wang, X. Li, et al. 2018. miR-671-5p inhibits gastric cancer cell proliferation and promotes cell apoptosis by targeting URGCP[J]. Experimental and Therapeutic Medicine 16 (6): 4753–4758.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, X., C. Nie, B. Tian, et al. 2019. miR-671-5p blocks the progression of human esophageal squamous cell carcinoma by suppressing FGFR2[J]. International Journal of Biological Sciences 15 (9): 1892–1904.

    Article  CAS  Google Scholar 

  31. Zhang, B., M. Sun, J. Wang, et al. 2019. MiR-671 ameliorates the progression of osteoarthritis in vitro and in vivo[J]. Pathol Res Pract 215 (7): 152423.

  32. Tang, X., J. Wang, X. Xia, et al. 2019. Elevated expression of ciRS-7 in peripheral blood mononuclear cells from rheumatoid arthritis patients[J]. Diagnostic Pathology 14 (1): 11.

    Article  Google Scholar 

  33. Mo, Y.Y. 2012. MicroRNA regulatory networks and human disease[J]. Cellular and Molecular Life Sciences 69 (21): 3529–3531.

    Article  CAS  Google Scholar 

  34. Espadinha, M., V. Barcherini, E.A. Lopes, et al. 2018. An update on MDMX and dual MDM2/X inhibitors[J]. Current Topics in Medicinal Chemistry 18 (8): 647–660.

    Article  CAS  Google Scholar 

  35. Xu, N., Y. Wang, D. Li, et al. 2010. MDM4 overexpression contributes to synoviocyte proliferation in patients with rheumatoid arthritis[J]. Biochemical and Biophysical Research Communications 401 (3): 417–421.

    Article  CAS  Google Scholar 

  36. Hou, C., D. Wang, and L. Zhang. 2019. MicroRNA34a3p inhibits proliferation of rheumatoid arthritis fibroblastlike synoviocytes[J]. Molecular Medicine Reports 20 (3): 2563–2570.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China Youth Project (No. 81804050) and Key Subject of Henan Province Traditional Chinese Medicine Scientific Research Project (No. 2018ZY1011).

Author information

Authors and Affiliations

Authors

Contributions

Junfu Ma had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Junfu Ma, Qingliang Meng, Junping Zhan, Huilian Wang, and Wei Fan; acquisition of data: Yanqi Wang, Sudan Zhang, Hua Bian, and Fuzeng Zheng; critical revision of the manuscript for important intellectual content: Junfu Ma; administrative, technical, or material support: Junfu Ma, Qingliang Meng, and Junping Zhan; study supervision: Junfu Ma.

Corresponding author

Correspondence to Fuzeng Zheng.

Ethics declarations

Ethics Approval and Consent to Participate

Written informed consent was obtained from patients with approval by the Institutional Review Board in Henan Province Hospital of Traditional Chinese Medicine.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Meng, Q., Zhan, J. et al. Paeoniflorin Suppresses Rheumatoid Arthritis Development via Modulating the Circ-FAM120A/miR-671-5p/MDM4 Axis. Inflammation 44, 2309–2322 (2021). https://doi.org/10.1007/s10753-021-01504-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01504-0

KEY WORDS:

Navigation