Skip to main content

Advertisement

Log in

Silent FOSL1 Enhances the Radiosensitivity of Glioma Stem Cells by Down-Regulating miR-27a-5p

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Since few reports have mentioned the role of FOSL1 in the radiotherapy sensitivity of glioma, this study would dig deep into this aspect. Cancer stem cells (CSCs) isolated by magnetic bead assay were identified by microscopy, qRT-PCR and western blot. The number of apoptotic cells was counted 72 h after X-ray irradiation to evaluate the sensitivity of cancer cells to radiotherapy. The effects of radiotherapy, FOSL1 and miR-27a-5p on basic cell functions were detected by functional experiments. The expressions of FOSL1, apoptosis-related genes and miR-27a-5p were detected by qRT-PCR and western blot as needed. The differential expression of FOSL1 and the effect of miR-27a-5p on survival rate were analyzed using GEPIA and UALCAN, respectively. FOSL1 was found highly expressed in glioma cells and patients. The appearance of spherical cells and high expressions of CSC-related markers indicated the successful isolation of CSC-like cells. The increment of X-ray dose enhanced the sensitivity of cancer cells to radiotherapy. Radiotherapy down-regulated cell viability and the expressions of FOSL1 and Bcl-2, but up-regulated cell apoptosis and the expressions of cleaved caspase-3 and Bax, which could be partially reversed by overexpressed FOSL1 or further enhanced by shFOSL1. MiR-27a-5p was highly expressed in in patients with glioma, which was associated with poor prognosis, while shFOSL1-inhibited miR-27a-5p expression enhanced the sensitivity of glioma stem cells to radiotherapy. In vivo experiments further verified the results obtained from in vitro experiments. Silent FOSL1 strengthened the radiosensitivity of glioma by down-regulating miR-27a-5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the study are available from the corresponding author on reasonable request.

References

  1. Allen C, Her S, Jaffray DA (2017) Radiotherapy for cancer: present and future. Adv Drug Deliv Rev 109:1–2. https://doi.org/10.1016/j.addr.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  2. Baek SJ et al (2015) Cancer stem cells: The potential of carbon ion beam radiation and new radiosensitizers (Review). Oncol Rep 34:2233–2237. https://doi.org/10.3892/or.2015.4236

    Article  CAS  PubMed  Google Scholar 

  3. Barros-Silva D et al (2018) MicroRNA-27a-5p regulation by promoter methylation and MYC signaling in prostate carcinogenesis. Cell Death Dis 9:167. https://doi.org/10.1038/s41419-017-0241-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bradshaw A, Wickremsekera A, Tan ST, Peng L, Davis PF, Itinteang T (2016) Cancer stem cell hierarchy in glioblastoma multiforme. Front Surg 3:21. https://doi.org/10.3389/fsurg.2016.00021

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chari NS et al (2020) Disruption of TP63-miR-27a* feedback loop by mutant TP53 in head and neck cancer. J National Cancer Inst 112:266–277. https://doi.org/10.1093/jnci/djz097

    Article  CAS  Google Scholar 

  7. Cho DY et al (2011) The role of cancer stem cells (CD133(+)) in malignant gliomas. Cell Transplant 20:121–125. https://doi.org/10.3727/096368910x532774

    Article  PubMed  Google Scholar 

  8. Colak S, Medema JP (2014) Cancer stem cells–important players in tumor therapy resistance. FEBS J 281:4779–4791. https://doi.org/10.1111/febs.13023

    Article  CAS  PubMed  Google Scholar 

  9. Dawood S, Austin L, Cristofanilli M (2014) Cancer stem cells: implications for cancer therapy. Oncology (Williston Park) 28(1101–1107):1110

    Google Scholar 

  10. Duan L et al (2020) Down-regulation of FOS-like antigen 1 enhances drug sensitivity in breast cancer. Int J Clin Exp Pathol 13:2092–2099

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dutton JW 3rd, Artwohl JE, Huang X, Fortman JD (2019) Assessment of Pain Associated with the Injection of Sodium Pentobarbital in Laboratory Mice (Mus musculus). J Am Assoc Lab Anim Sci 58:373–379. https://doi.org/10.30802/aalas-jaalas-18-000094

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fiscon G, Conte F, Paci P (2018) SWIM tool application to expression data of glioblastoma stem-like cell lines, corresponding primary tumors and conventional glioma cell lines. BMC Bioinform 19:436. https://doi.org/10.1186/s12859-018-2421-x

    Article  CAS  Google Scholar 

  13. Huynh TT et al (2015) Pterostilbene suppressed irradiation-resistant glioma stem cells by modulating GRP78/miR-205 axis. J Nutrit Biochem 26:466–475. https://doi.org/10.1016/j.jnutbio.2014.11.015

    Article  CAS  Google Scholar 

  14. Jarosz-Biej M, Smolarczyk R, Cichoń T, Kułach N (2019) Tumor microenvironment as A “Game Changer” in cancer radiotherapy. Int J Mol Sci. https://doi.org/10.3390/ijms20133212

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jiang X, Xie H, Dou Y, Yuan J, Zeng D, Xiao S (2020) Expression and function of FRA1 protein in tumors. Mol Biol Rep 47:737–752. https://doi.org/10.1007/s11033-019-05123-9

    Article  CAS  PubMed  Google Scholar 

  16. Kastan MB, Schlaffer E, Russo JE, Colvin OM, Civin CI, Hilton J (1990) Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 75:1947–1950

    Article  CAS  PubMed  Google Scholar 

  17. Kim B (2017) Western blot techniques. Methods Mol Biol (Clifton, NJ) 1606:133–139. https://doi.org/10.1007/978-1-4939-6990-6_9

    Article  CAS  Google Scholar 

  18. Kong L, Wu Q, Zhao L, Ye J, Li N, Yang H (2019) Effect of microRNA-27a-5p on apoptosis and inflammatory response of pancreatic acinar cells in acute pancreatitis by targeting PTEN. J Cell Biochem 120:15844–15850. https://doi.org/10.1002/jcb.28855

    Article  CAS  PubMed  Google Scholar 

  19. Lapointe S, Perry A, Butowski NA (2018) Primary brain tumours in adults. Lancet (London, England) 392:432–446. https://doi.org/10.1016/s0140-6736(18)30990-5

    Article  Google Scholar 

  20. Lawrie TA et al (2019) Long-term neurocognitive and other side effects of radiotherapy, with or without chemotherapy, for glioma. Cochrane Database Syst Rev 8:Cd013047. https://doi.org/10.1002/14651858.CD013047.pub2

    Article  PubMed  Google Scholar 

  21. Mishra S, Yadav T, Rani V (2016) Exploring miRNA based approaches in cancer diagnostics and therapeutics. Crit Rev Oncol Hematol 98:12–23. https://doi.org/10.1016/j.critrevonc.2015.10.003

    Article  PubMed  Google Scholar 

  22. Mizuno K et al (2017) The microRNA expression signature of small cell lung cancer: tumor suppressors of miR-27a-5p and miR-34b-3p and their targeted oncogenes. J Hum Genet 62:671–678. https://doi.org/10.1038/jhg.2017.27

    Article  CAS  PubMed  Google Scholar 

  23. Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ (2016) MicroRNAs and their impact on radiotherapy for cancer. Radiat Res 185:668–677. https://doi.org/10.1667/rr14370.1

    Article  CAS  PubMed  Google Scholar 

  24. Nassar D, Blanpain C (2016) Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol 11:47–76. https://doi.org/10.1146/annurev-pathol-012615-044438

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa D, Ansari K, Nowicki MO, Salińska E, Bronisz A, Godlewski J (2019) MicroRNA-451 inhibits migration of glioblastoma while making it more susceptible to conventional therapy. Non-coding RNA. https://doi.org/10.3390/ncrna5010025

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ostrom QT et al (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peitzsch C, Kurth I, Kunz-Schughart L, Baumann M, Dubrovska A (2013) Discovery of the cancer stem cell related determinants of radioresistance. Radiother Oncol 108:378–387. https://doi.org/10.1016/j.radonc.2013.06.003

    Article  PubMed  Google Scholar 

  28. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108. https://doi.org/10.1038/nprot.2008.73

    Article  CAS  PubMed  Google Scholar 

  29. Thon N et al (2010) Presence of pluripotent CD133+ cells correlates with malignancy of gliomas. Mol Cell Neurosci 43:51–59. https://doi.org/10.1016/j.mcn.2008.07.022

    Article  CAS  PubMed  Google Scholar 

  30. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26:753–767. https://doi.org/10.1016/j.molcel.2007.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vlashi E, Pajonk F (2015) Cancer stem cells, cancer cell plasticity and radiation therapy. Seminars Cancer Biol 31:28–35. https://doi.org/10.1016/j.semcancer.2014.07.001

    Article  CAS  Google Scholar 

  32. Wan Y et al (2021) A super-enhancer driven by FOSL1 controls miR-21–5p expression in head and neck squamous cell carcinoma. Front Oncol 11:656628. https://doi.org/10.3389/fonc.2021.656628

    Article  PubMed  PubMed Central  Google Scholar 

  33. Xing Y et al (2018) MiR-27a-5p regulates apoptosis of liver ischemia-reperfusion injury in mice by targeting Bach1. J Cell Biochem 119:10376–10383. https://doi.org/10.1002/jcb.27383

    Article  CAS  PubMed  Google Scholar 

  34. Xu JF, Fang J, Shen Y, Zhang JM, Liu WG, Shen H (2011) Should we reoperate for recurrent high-grade astrocytoma? J Neurooncol 105:291–299. https://doi.org/10.1007/s11060-011-0585-6

    Article  PubMed  Google Scholar 

  35. Yang YP et al (2012) Inhibition of cancer stem cell-like properties and reduced chemoradioresistance of glioblastoma using microRNA145 with cationic polyurethane-short branch PEI. Biomaterials 33:1462–1476. https://doi.org/10.1016/j.biomaterials.2011.10.071

    Article  CAS  PubMed  Google Scholar 

  36. Zhou L et al (2016) MiR-27a-3p functions as an oncogene in gastric cancer by targeting BTG2. Oncotarget 7:51943–51954. https://doi.org/10.18632/oncotarget.10460

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhu J, Zhao YP, Zhang YQ (2020) Low expression of FOSL1 is associated with favorable prognosis and sensitivity to radiation/pharmaceutical therapy in lower grade glioma. Neurol Res 42:522–527. https://doi.org/10.1080/01616412.2020.1748323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RL: Substantial contributions to conception and design. WC, NL, SD, ZS, LY: Data acquisition, data analysis and interpretation. RL: Drafting the article or critically revising it for important intellectual content. RL, WC, NL, SD, ZS, LY: Final approval of the version to be published. RL, WC, NL, SD, ZS, LY: Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Lei Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Consent for Publication

Not applicable.

Ethical Approval

Animal experiments involved in this study were approved by the Animal Experiment Ethics Committee of the First Affiliated Hospital, Guangzhou Medical University (FG201907010NWK).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Che, W., Liang, N. et al. Silent FOSL1 Enhances the Radiosensitivity of Glioma Stem Cells by Down-Regulating miR-27a-5p. Neurochem Res 46, 3222–3246 (2021). https://doi.org/10.1007/s11064-021-03427-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03427-6

Keywords

Navigation