Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies

Abstract

Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered ‘prototype’ tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.

Key points

  • Several lines of evidence substantiate the concept that 4-repeat tauopathies form an aetiologically coherent disease continuum, including progressive supranuclear palsy, corticobasal degeneration, globular glial tauopathy and argyrophilic grain disease.

  • Neurobiological, neuroimaging and neuropathological data suggest that the spread of 4-repeat tau isoforms can induce neurodegeneration and propagation of tau pathology in a unifying disease mechanism.

  • 4-repeat tauopathies are increasingly recognized in clinical settings by their characteristic clinical manifestations, spanning from predominantly movement disorders and overlap syndromes to predominantly cognitive syndromes.

  • Biomarkers, such as tau PET ligands, are being developed to substantiate the diagnosis of 4-repeat tauopathies in living patients.

  • Currently, symptomatic therapeutic options for 4-repeat tauopathies are limited, but the available options must not be overlooked.

  • A broad spectrum of 4-repeat tau treatments are currently being developed, making the field of 4-repeat tauopathies an important testbed for precision medicine in neurodegenerative disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tau pathology and its distribution in 4R-tauopathies.
Fig. 2: Imaging characteristics of PSP–RS and CBS.
Fig. 3: PET findings in 4R-tauopathies.
Fig. 4: Targets of therapeutic interventions according to aetiopathogenetic cellular and molecular mechanisms in 4R-tauopathies.

Similar content being viewed by others

References

  1. Kovacs, G. G. Invited review: Neuropathology of tauopathies: principles and practice. Neuropathol. Appl. Neurobiol. 41, 3–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Spillantini, M. G., Bird, T. D. & Ghetti, B. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a new group of tauopathies. Brain Pathol. 8, 387–402 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Rosler, T. W. et al. Four-repeat tauopathies. Prog. Neurobiol. 180, 101644 (2019).

    Article  PubMed  CAS  Google Scholar 

  4. Kovacs, G. G. et al. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy. Acta Neuropathol. 131, 87–102 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Tacik, P., Sanchez-Contreras, M., Rademakers, R., Dickson, D. W. & Wszolek, Z. K. Genetic disorders with tau pathology: a review of the literature and report of two patients with tauopathy and positive family histories. Neurodegener. Dis. 16, 12–21 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Stamelou, M., Giagkou, N. & Hoglinger, G. U. One decade ago, one decade ahead in progressive supranuclear palsy. Mov. Disord. 34, 1284–1293 (2019).

    Article  PubMed  Google Scholar 

  7. Rojas, J. C. & Boxer, A. L. Neurodegenerative disease in 2015: targeting tauopathies for therapeutic translation. Nat. Rev. Neurol. 12, 74–76 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y. & Kirschner, M. W. A protein factor essential for microtubule assembly. Proc. Natl Acad. Sci. USA 72, 1858–1862 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Goedert, M., Spillantini, M. G., Jakes, R., Rutherford, D. & Crowther, R. A. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3, 519–526 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y. & Mandelkow, E. Tau in physiology and pathology. Nat. Rev. Neurosci. 17, 5–21 (2016). A comprehensive overview of tau in health and disease.

    Article  PubMed  CAS  Google Scholar 

  11. Sergeant, N., Wattez, A. & Delacourte, A. Neurofibrillary degeneration in progressive supranuclear palsy and corticobasal degeneration: Tau pathologies with exclusively ‘Exon 10’ isoforms. J. Neurochem. 72, 1243–1249 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Delacourte, A., Sergeant, N., Wattez, A., Gauvreau, D. & Robitaille, Y. Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their τ isoform distribution and phosphorylation. Ann. Neurol. 43, 193–204 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Garcia, M. L. & Cleveland, D. W. Going new places using an old MAP: Tau, microtubules and human neurodegenerative disease. Curr. Opin. Cell Biol. 13, 41–48 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Kanaan, N. M. et al. Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J. Neurosci. 31, 9858–9868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guo, T., Noble, W. & Hanger, D. P. Roles of tau protein in health and disease. Acta Neuropathol. 133, 665–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hanger, D. P., Anderton, B. H. & Noble, W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol. Med. 15, 112–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Smet-Nocca, C. et al. Identification of O-GlcNAc sites within peptides of the Tau protein and their impact on phosphorylation. Mol. Biosyst. 7, 1420–1429 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W. & Gong, C. X. O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer’s disease. Proc. Natl Acad. Sci. USA 101, 10804–10809 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cook, C. et al. Acetylation of the KXGS motifs in tau is a critical determinant in modulation of tau aggregation and clearance. Hum. Mol. Genet. 23, 104–116 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Cohen, T. J. et al. The acetylation of tau inhibits its function and promotes pathological tau aggregation. Nat. Commun. 2, 252 (2011).

    Article  PubMed  Google Scholar 

  21. Alquezar, C., Arya, S. & Kao, A. W. Tau post-translational modifications: dynamic transformers of tau function, degradation, and aggregation. Front. Neurol. 11, 595532 (2020).

    Article  PubMed  Google Scholar 

  22. Ghetti, B. et al. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathol. Appl. Neurobiol. 41, 24–46 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen, Z. et al. Genome-wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Mov. Disord. 34, 1049–1059 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Zhong, Q., Congdon, E. E., Nagaraja, H. N. & Kuret, J. Tau isoform composition influences rate and extent of filament formation. J. Biol. Chem. 287, 20711–20719 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Adams, S. J., DeTure, M. A., McBride, M., Dickson, D. W. & Petrucelli, L. Three repeat isoforms of tau inhibit assembly of four repeat tau filaments. PLoS ONE 5, e10810 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Schoch, K. M. et al. Increased 4R-tau induces pathological changes in a human-tau mouse model. Neuron 90, 941–947 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bunker, J. M., Wilson, L., Jordan, M. A. & Feinstein, S. C. Modulation of microtubule dynamics by tau in living cells: implications for development and neurodegeneration. Mol Biol Cell. 15, 2720–2728 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen, D. et al. Tau local structure shields an amyloid-forming motif and controls aggregation propensity. Nat. Commun. 10, 2493 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Litvan, I. et al. Environmental and occupational risk factors for progressive supranuclear palsy: case-control study. Mov. Disord. 31, 644–652 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Caparros-Lefebvre, D. Doparesistant parkinsonism in Guadeloupe and possible relation with the toxicity of isoquinolone derivates. Mov. Disord. 16, 394–395 (2001).

    Google Scholar 

  31. Caparros-Lefebvre, D. & Elbaz, A. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case-control study. Caribbean Parkinsonism Study Group. Lancet 354, 281–286 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Escobar-Khondiker, M. et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. J. Neurosci. 27, 7827–7837 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hoglinger, G. U. et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J. Neurochem. 95, 930–939 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Champy, P. et al. Quantification of acetogenins in Annona muricata linked to atypical parkinsonism in guadeloupe. Mov. Disord. 20, 1629–1633 (2005).

    Article  PubMed  Google Scholar 

  35. Hoglinger, G. U. et al. Experimental evidence for a toxic etiology of tropical parkinsonism. Mov. Disord. 20, 118–119 (2005).

    Article  PubMed  Google Scholar 

  36. Champy, P. et al. Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. J. Neurochem. 88, 63–69 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Lannuzel, A. et al. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 121, 287–296 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hoglinger, G. U. et al. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J. Neurochem. 84, 491–502 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Alquezar, C. et al. Heavy metals contaminating the environment of a progressive supranuclear palsy cluster induce tau accumulation and cell death in cultured neurons. Sci. Rep. 10, 569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caparros-Lefebvre, D. et al. A geographical cluster of progressive supranuclear palsy in northern France. Neurology 85, 1293–1300 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Yokoyama, J. S. et al. Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia. Acta Neuropathol. 133, 825–837 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Houlden, H. et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology 56, 1702–1706 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Caffrey, T. M., Joachim, C., Paracchini, S., Esiri, M. M. & Wade-Martins, R. Haplotype-specific expression of exon 10 at the human MAPT locus. Hum. Mol. Genet. 15, 3529–3537 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Trabzuni, D. et al. MAPT expression and splicing is differentially regulated by brain region: relation to genotype and implication for tauopathies. Hum. Mol. Genet. 21, 4094–4103 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li, Y. et al. An epigenetic signature in peripheral blood associated with the haplotype on 17q21.31, a risk factor for neurodegenerative tauopathy. PLoS Genet. 10, e1004211 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Myers, A. J. et al. The MAPT H1c risk haplotype is associated with increased expression of tau and especially of 4 repeat containing transcripts. Neurobiol. Dis. 25, 561–570 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Heckman, M. G. et al. Association of MAPT subhaplotypes with risk of progressive supranuclear palsy and severity of tau pathology. JAMA Neurol. 76, 710–717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhao, N. et al. APOE ε2 is associated with increased tau pathology in primary tauopathy. Nat. Commun. 9, 4388 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Ghebremedhin, E. et al. Argyrophilic grain disease is associated with apolipoprotein E ε2 allele. Acta Neuropathol. 96, 222–224 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Tolnay, M., Probst, A., Monsch, A. U., Staehelin, H. B. & Egensperger, R. Apolipoprotein E allele frequencies in argyrophilic grain disease. Acta Neuropathol. 96, 225–227 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Tolnay, M. & Clavaguera, F. Argyrophilic grain disease: a late-onset dementia with distinctive features among tauopathies. Neuropathology 24, 269–283 (2004).

    Article  PubMed  Google Scholar 

  52. Togo, T., Cookson, N. & Dickson, D. W. Argyrophilic grain disease: neuropathology, frequency in a dementia brain bank and lack of relationship with apolipoprotein E. Brain Pathol. 12, 45–52 (2002).

    Article  PubMed  Google Scholar 

  53. Rauch, J. N. et al. LRP1 is a master regulator of tau uptake and spread. Nature 580, 381–385 (2020). An important paper in which LRP1 was identified as the regulator of tau uptake and spread, which may have important therapeutic implications.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Melquist, S. et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. Am. J. Hum. Genet. 80, 769–778 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Höglinger, G. U. et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. Nat. Genet. 43, 699–705 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chen, J. A. et al. Joint genome-wide association study of progressive supranuclear palsy identifies novel susceptibility loci and genetic correlation to neurodegenerative diseases. Mol. Neurodegener. 13, 41 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Sanchez-Contreras, M. Y. et al. Replication of progressive supranuclear palsy genome-wide association study identifies SLCO1A2 and DUSP10 as new susceptibility loci. Mol. Neurodegener. 13, 37 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Kouri, N. et al. Genome-wide association study of corticobasal degeneration identifies risk variants shared with progressive supranuclear palsy. Nat. Commun. 6, 7247 (2015). GWAS in corticobasal degeneration that links CBD and PSP on the basis of common risk variants.

    Article  CAS  PubMed  Google Scholar 

  59. Bonham, L. W. et al. CXCR4 involvement in neurodegenerative diseases. Transl. Psychiatry 8, 73 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jabbari, E. et al. Variation at the TRIM11 locus modifies progressive supranuclear palsy phenotype. Ann. Neurol. 84, 485–496 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jabbari, E. et al. Genetic determinants of survival in progressive supranuclear palsy: a genome-wide association study. Lancet Neurol. 20, 107–116 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Zhao, Y. et al. Appoptosin-mediated caspase cleavage of tau contributes to progressive supranuclear palsy pathogenesis. Neuron 87, 963–975 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yuan, S. H. et al. Tauopathy-associated PERK alleles are functional hypomorphs that increase neuronal vulnerability to ER stress. Hum. Mol. Genet. 27, 3951–3963 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ferrari, R. et al. Assessment of common variability and expression quantitative trait loci for genome-wide associations for progressive supranuclear palsy. Neurobiol. Aging 35, 1514.e1–1514.e12 (2014).

    Article  CAS  Google Scholar 

  65. Allen, M. et al. Gene expression, methylation and neuropathology correlations at progressive supranuclear palsy risk loci. Acta Neuropathol. 132, 197–211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huin, V. et al. The MAPT gene is differentially methylated in the progressive supranuclear palsy brain. Mov. Disord. 31, 1883–1890 (2016).

    Article  CAS  PubMed  Google Scholar 

  67. Smith, P. Y. et al. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy. Hum. Mol. Genet. 20, 4016–4024 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Tatura, R. et al. microRNA profiling: increased expression of miR-147a and miR-518e in progressive supranuclear palsy (PSP). Neurogenetics 17, 165–171 (2016).

    Article  CAS  PubMed  Google Scholar 

  69. Reyes, J. F., Geula, C., Vana, L. & Binder, L. I. Selective tau tyrosine nitration in non-AD tauopathies. Acta Neuropathol. 123, 119–132 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Sato, C. et al. Tau kinetics in neurons and the human central nervous system. Neuron 97, 1284–1298.e7 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takeda, S. et al. Seed-competent high-molecular-weight tau species accumulates in the cerebrospinal fluid of Alzheimer’s disease mouse model and human patients. Ann. Neurol. 80, 355–367 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Katsinelos, T. et al. Unconventional secretion mediates the trans-cellular spreading of tau. Cell Rep. 23, 2039–2055 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Wagshal, D. et al. Divergent CSF τ alterations in two common tauopathies: Alzheimer’s disease and progressive supranuclear palsy. J. Neurol. Neurosurg. Psychiatry 86, 244–250 (2015).

    Article  PubMed  Google Scholar 

  74. Barthélemy, N. R. et al. Differential mass spectrometry profiles of tau protein in the cerebrospinal fluid of patients with Alzheimer’s disease, progressive supranuclear palsy, and dementia with lewy bodies. J. Alzheimers Dis. 51, 1033–1043 (2016).

    Article  PubMed  CAS  Google Scholar 

  75. Dujardin, S. et al. Ectosomes: a new mechanism for non-exosomal secretion of Tau protein. PLoS ONE 9, e100760 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gerson, J. E. et al. Characterization of tau oligomeric seeds in progressive supranuclear palsy. Acta Neuropathol. Commun. 2, 73 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Clavaguera, F. et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat. Cell Biol. 11, 909–913 (2009). An important study that supports the hypothesis that tau spreading is the mechanism underlying progression, in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Clavaguera, F. et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc. Natl Acad. Sci. USA 110, 9535–9540 (2013). An important study that supports the hypothesis that tau spreading is the mechanism underlying progression, using human brain homogenates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Clavaguera, F., Grueninger, F. & Tolnay, M. Intercellular transfer of tau aggregates and spreading of tau pathology: implications for therapeutic strategies. Neuropharmacology 76, 9–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Goedert, M., Masuda-Suzukake, M. & Falcon, B. Like prions: the propagation of aggregated tau and α-synuclein in neurodegeneration. Brain 140, 266–278 (2017).

    Article  PubMed  Google Scholar 

  81. Clavaguera, F., Hench, J., Goedert, M. & Tolnay, M. Invited review: Prion-like transmission and spreading of tau pathology. Neuropathol. Appl. Neurobiol. 41, 47–58 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Hauw, J. J. et al. Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44, 2015–2019 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Kovacs, G. G. et al. Tauopathies: from molecule to therapy [German]. Nervenarzt 89, 1083–1094 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Yokota, O. et al. Neuropathological comorbidity associated with argyrophilic grain disease. Neuropathology 38, 82–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Gil, M. J. et al. Argyrophilic grain pathology in frontotemporal lobar degeneration: demographic, clinical, neuropathological, and genetic features. J. Alzheimers Dis. 63, 1109–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  86. Tatsumi, S. et al. Argyrophilic grains are reliable disease-specific features of corticobasal degeneration. J. Neuropathol. Exp. Neurol. 73, 30–38 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Ahmed, Z. et al. Globular glial tauopathies (GGT): consensus recommendations. Acta Neuropathol. 126, 537–544 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kovacs, G. G. et al. White matter tauopathy with globular glial inclusions: a distinct sporadic frontotemporal lobar degeneration. J. Neuropathol. Exp. Neurol. 67, 963–975 (2008).

    Article  PubMed  Google Scholar 

  89. Rohan, Z., Milenkovic, I., Lutz, M. I., Matej, R. & Kovacs, G. G. Shared and distinct patterns of oligodendroglial response in α-synucleinopathies and tauopathies. J. Neuropathol. Exp. Neurol. 75, 1100–1109 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Josephs, K. A. et al. Atypical progressive supranuclear palsy with corticospinal tract degeneration. J. Neuropathol. Exp. Neurol. 65, 396–405 (2006).

    Article  PubMed  Google Scholar 

  91. Tanaka, H. et al. Morphological characterisation of glial and neuronal tau pathology in globular glial tauopathy (types II and III). Neuropathol. Appl. Neurobiol. 46, 344–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Kovacs, G. G. Astroglia and tau: new perspectives. Front. Aging Neurosci. 12, 96 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arai, T. et al. Identification of amino-terminally cleaved tau fragments that distinguish progressive supranuclear palsy from corticobasal degeneration. Ann. Neurol. 55, 72–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Taniguchi-Watanabe, S. et al. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau. Acta Neuropathol. 131, 267–280 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Sanders, D. W. et al. Distinct tau prion strains propagate in cells and mice and define different tauopathies. Neuron 82, 1271–1288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Narasimhan, S. et al. Pathological tau strains from human brains recapitulate the diversity of tauopathies in nontransgenic mouse brain. J. Neurosci. 37, 11406–11423 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Braak, H. & Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259 (1991).

    Article  CAS  PubMed  Google Scholar 

  98. Williams, D. R. et al. Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson’s syndrome. Brain 130, 1566–1576 (2007). One of the first studies to show that differences in the underlying distribution and burden of tau pathology explain different PSP phenotypes.

    Article  PubMed  Google Scholar 

  99. Kovacs, G. G. et al. Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathol. 140, 99–119 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kouri, N., Whitwell, J. L., Josephs, K. A., Rademakers, R. & Dickson, D. W. Corticobasal degeneration: a pathologically distinct 4R tauopathy. Nat. Rev. Neurol. 7, 263–272 (2011).

    Article  CAS  PubMed  Google Scholar 

  101. Ling, H. et al. Fulminant corticobasal degeneration: a distinct variant with predominant neuronal tau aggregates. Acta Neuropathol. 139, 717–734 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ling, H. et al. Astrogliopathy predominates the earliest stage of corticobasal degeneration pathology. Brain 139, 3237–3252 (2016).

    Article  PubMed  Google Scholar 

  103. Saito, Y. et al. Staging of argyrophilic grains: an age-associated tauopathy. J. Neuropathol. Exp. Neurol. 63, 911–918 (2004).

    Article  PubMed  Google Scholar 

  104. Robinson, J. L. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141, 2181–2193 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kovacs, G. G. Are comorbidities compatible with a molecular pathological classification of neurodegenerative diseases? Curr. Opin. Neurol. 32, 279–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  106. Koga, S., Lin, W. L., Walton, R. L., Ross, O. A. & Dickson, D. W. TDP-43 pathology in multiple system atrophy: colocalization of TDP-43 and α-synuclein in glial cytoplasmic inclusions. Neuropathol. Appl. Neurobiol. 44, 707–721 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Jecmenica Lukic, M. et al. Copathology in progressive supranuclear palsy: does it matter? Mov. Disord. 35, 984–993 (2020).

    Article  CAS  PubMed  Google Scholar 

  108. Robinson, J. L. et al. Primary tau pathology, not copathology, correlates with clinical symptoms in PSP and CBD. J. Neuropathol. Exp. Neurol. 79, 296–304 (2020).

    Article  CAS  PubMed  Google Scholar 

  109. Allen, M. et al. Divergent brain gene expression patterns associate with distinct cell-specific tau neuropathology traits in progressive supranuclear palsy. Acta Neuropathol. 136, 709–727 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ferrer, I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: the forgotten partner. Prog. Neurobiol. 169, 24–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  111. Boluda, S. et al. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains. Acta Neuropathol. 129, 221–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Respondek, G. et al. The phenotypic spectrum of progressive supranuclear palsy: a retrospective multicenter study of 100 definite cases. Mov. Disord. 29, 1758–1766 (2014). One of the largest clinicopathological studies in PSP that identified more phentoypes than previously described.

    Article  PubMed  Google Scholar 

  113. Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503 (2013). The first clinical criteria that took into account the phenotypic variability in CBD.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Tsuboi, Y. et al. Increased tau burden in the cortices of progressive supranuclear palsy presenting with corticobasal syndrome. Mov. Disord. 20, 982–988 (2005).

    Article  PubMed  Google Scholar 

  115. Ahmed, Z., Josephs, K. A., Gonzalez, J., DelleDonne, A. & Dickson, D. W. Clinical and neuropathologic features of progressive supranuclear palsy with severe pallido-nigro-luysial degeneration and axonal dystrophy. Brain 131, 460–472 (2008).

    Article  PubMed  Google Scholar 

  116. Ling, H. et al. Characteristics of progressive supranuclear palsy presenting with corticobasal syndrome: a cortical variant. Neuropathol. Appl. Neurobiol. 40, 149–163 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Iankova, V. et al. Video-tutorial for the Movement Disorder Society criteria for progressive supranuclear palsy. Parkinsonism Relat. Disord. 78, 200–203 (2020).

    Article  PubMed  Google Scholar 

  118. Hoglinger, G. U. et al. Clinical diagnosis of progressive supranuclear palsy: The Movement Disorder Society criteria. Mov. Disord. 32, 853–864 (2017). The first MDS–PSP criteria taking into account all described phentoypes in PSP and introducing a ‘suggestive of’ category for early identification of patients.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Respondek, G. et al. Which ante mortem clinical features predict progressive supranuclear palsy pathology? Mov. Disord. 32, 995–1005 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Williams, D. R. et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 128, 1247–1258 (2005).

    Article  PubMed  Google Scholar 

  121. Grimm, M. J. et al. How to apply the Movement Disorder Society criteria for diagnosis of progressive supranuclear palsy. Mov. Disord. 34, 1228–1232 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Kertesz, A. et al. Progressive supranuclear palsy in a family with TDP-43 pathology. Neurocase 21, 178–184 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. de Bruin, V. M., Lees, A. J. & Daniel, S. E. Diffuse Lewy body disease presenting with supranuclear gaze palsy, parkinsonism, and dementia: a case report. Mov. Disord. 7, 355–358 (1992).

    Article  PubMed  Google Scholar 

  124. Rivaud-Pechoux, S. et al. Longitudinal ocular motor study in corticobasal degeneration and progressive supranuclear palsy. Neurology 54, 1029–1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Ling, H. et al. Does corticobasal degeneration exist? A clinicopathological re-evaluation. Brain 133, 2045–2057 (2010). One of the most comprehensive clinicopathological studies in CBD.

    Article  PubMed  Google Scholar 

  126. Marsili, L., Dickson, D. W. & Espay, A. J. Globular glial tauopathy may be mistaken for corticobasal syndrome–pointers for the clinician. Mov. Disord. Clin. Pract. 5, 439–441 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Factor, S. A., Higgins, D. S. & Qian, J. Primary progressive freezing gait: a syndrome with many causes. Neurology 66, 411–414 (2006).

    Article  PubMed  Google Scholar 

  128. Williams, D. R., Holton, J. L., Strand, K., Revesz, T. & Lees, A. J. Pure akinesia with gait freezing: a third clinical phenotype of progressive supranuclear palsy. Mov. Disord. 22, 2235–2241 (2007).

    Article  PubMed  Google Scholar 

  129. Owens, E. et al. The clinical spectrum and natural history of pure akinesia with gait freezing. J. Neurol. 263, 2419–2423 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Nagao, S. et al. Progressive supranuclear palsy presenting as primary lateral sclerosis but lacking parkinsonism, gaze palsy, aphasia, or dementia. J. Neurol. Sci. 323, 147–153 (2012).

    Article  PubMed  Google Scholar 

  131. Liu, A. J. et al. Progressive supranuclear palsy and primary lateral sclerosis secondary to globular glial tauopathy: a case report and a practical theoretical framework for the clinical prediction of this rare pathological entity. Neurocase 26, 91–97 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Iwasaki, Y. et al. An autopsied case of progressive supranuclear palsy presenting with cerebellar ataxia and severe cerebellar involvement. Neuropathology 33, 561–567 (2013).

    CAS  PubMed  Google Scholar 

  133. Kanazawa, M. et al. Early clinical features of patients with progressive supranuclear palsy with predominant cerebellar ataxia. Parkinsonism Relat. Disord. 19, 1149–1151 (2013).

    Article  PubMed  Google Scholar 

  134. Ando, S., Kanazawa, M. & Onodera, O. Progressive supranuclear palsy with predominant cerebellar ataxia. J. Mov. Disord. 13, 20–26 (2020).

    Article  PubMed  Google Scholar 

  135. Rascovsky, K. et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134, 2456–2477 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Josephs, K. A. et al. Clinicopathologic analysis of frontotemporal and corticobasal degenerations and PSP. Neurology 66, 41–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Josephs, K. A. et al. Clinicopathological and imaging correlates of progressive aphasia and apraxia of speech. Brain 129, 1385–1398 (2006).

    Article  PubMed  Google Scholar 

  138. Grossman, M. Primary progressive aphasia: clinicopathological correlations. Nat. Rev. Neurol. 6, 88–97 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Grossman, M. et al. Progressive nonfluent aphasia: language, cognitive, and PET measures contrasted with probable Alzheimer’s disease. J. Cogn. Neurosci. 8, 135–154 (1996).

    Article  CAS  PubMed  Google Scholar 

  140. Rusina, R. et al. Globular glial tauopathy type I presenting as atypical progressive aphasia, with comorbid limbic-predominant age-related TDP-43 encephalopathy. Front. Aging Neurosci. 11, 336 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kim, E. J. et al. Globular glial tauopathy presenting as non-fluent/agrammatic variant primary progressive aphasia with chorea. Parkinsonism Relat. Disord. 44, 159–161 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Tang-Wai, D. F. et al. Pathologically confirmed corticobasal degeneration presenting with visuospatial dysfunction. Neurology 61, 1134–1135 (2003).

    Article  CAS  PubMed  Google Scholar 

  143. Lee, S. E. et al. Clinicopathological correlations in corticobasal degeneration. Ann. Neurol. 70, 327–340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Bak, T. H., Caine, D., Hearn, V. C. & Hodges, J. R. Visuospatial functions in atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 77, 454–456 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Crutch, S. J. et al. Posterior cortical atrophy. Lancet Neurol. 11, 170–178 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Grimm, M. J. et al. Clinical conditions “Suggestive of progressive supranuclear palsy”–diagnostic performance. Mov. Disord. 35, 2301–2313 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ali, F. et al. Sensitivity and specificity of diagnostic criteria for progressive supranuclear palsy. Mov. Disord. 34, 1144–1153 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Gazzina, S. et al. Neuropathological validation of the MDS-PSP criteria with PSP and other frontotemporal lobar degeneration. bioRxiv https://doi.org/10.1101/520510 (2019).

    Article  Google Scholar 

  149. Alexander, S. K. et al. Validation of the new consensus criteria for the diagnosis of corticobasal degeneration. J. Neurol. Neurosurg. Psychiatry 85, 925–929 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Ouchi, H. et al. Pathology and sensitivity of current clinical criteria in corticobasal syndrome. Mov. Disord. 29, 238–244 (2014).

    Article  PubMed  Google Scholar 

  151. Respondek, G. et al. Validation of the Movement Disorder Society criteria for the diagnosis of 4-repeat tauopathies. Mov. Disord. 35, 171–176 (2020).

    Article  PubMed  Google Scholar 

  152. Kato, N., Arai, K. & Hattori, T. Study of the rostral midbrain atrophy in progressive supranuclear palsy. J. Neurol. Sci. 210, 57–60 (2003).

    Article  PubMed  Google Scholar 

  153. Massey, L. A. et al. Conventional magnetic resonance imaging in confirmed progressive supranuclear palsy and multiple system atrophy. Mov. Disord. 27, 1754–1762 (2012). One of very few studies of MRI in definite PSP and MSA.

    Article  PubMed  Google Scholar 

  154. Paviour, D. C., Price, S. L., Stevens, J. M., Lees, A. J. & Fox, N. C. Quantitative MRI measurement of superior cerebellar peduncle in progressive supranuclear palsy. Neurology 64, 675–679 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Whitwell, J. L. et al. Disrupted thalamocortical connectivity in PSP: a resting state fMRI, DTI, and VBM study. Parkinsonism Relat. Disord. 17, 599–605 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Quattrone, A. et al. MR imaging index for differentiation of progressive supranuclear palsy from Parkinson disease and the Parkinson variant of multiple system atrophy. Radiology 246, 214–221 (2008).

    Article  PubMed  Google Scholar 

  157. Whitwell, J. L. et al. Radiological biomarkers for diagnosis in PSP: Where are we and where do we need to be? Mov. Disord. 32, 955–971 (2017). A comprehensive review of imaging in PSP.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Möller, L. et al. Manual MRI morphometry in Parkinsonian syndromes. Mov. Disord. 32, 778–782 (2017).

    Article  PubMed  Google Scholar 

  159. Surova, Y. et al. Disease-specific structural changes in thalamus and dentatorubrothalamic tract in progressive supranuclear palsy. Neuroradiology 57, 1079–1091 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Knake, S. et al. In vivo demonstration of microstructural brain pathology in progressive supranuclear palsy: a DTI study using TBSS. Mov. Disord. 25, 1232–1238 (2010).

    Article  PubMed  Google Scholar 

  161. Agosta, F. et al. Diffusion tensor MRI contributes to differentiate Richardson’s syndrome from PSP-parkinsonism. Neurobiol. Aging 33, 2817–2826 (2012).

    Article  PubMed  Google Scholar 

  162. Potrusil, T. et al. Diagnostic potential of automated tractography in progressive supranuclear palsy variants. Parkinsonism Relat. Disord. 72, 65–71 (2020).

    Article  PubMed  Google Scholar 

  163. Seki, M. et al. Diagnostic potential of dentatorubrothalamic tract analysis in progressive supranuclear palsy. Parkinsonism Relat. Disord. 49, 81–87 (2018).

    Article  PubMed  Google Scholar 

  164. Nigro, S. et al. Track density imaging in progressive supranuclear palsy: a pilot study. Hum. Brain Mapp. 40, 1729–1737 (2019).

    Article  PubMed  Google Scholar 

  165. Archer, D. B. et al. Development and validation of the Automated Imaging Differentiation in Parkinsonism (AID-P): a multi-site machine learning study. Lancet Digit. Health 1, e222–e231 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Correia, M. M. et al. Towards accurate and unbiased imaging-based differentiation of Parkinson’s disease, progressive supranuclear palsy and corticobasal syndrome. Brain Commun. 2, fcaa051 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Morisi, R. et al. Multi-class parkinsonian disorders classification with quantitative MR markers and graph-based features using support vector machines. Parkinsonism Relat. Disord. 47, 64–70 (2018).

    Article  PubMed  Google Scholar 

  168. Talai, A. S., Sedlacik, J., Boelmans, K. & Forkert, N. D. Widespread diffusion changes differentiate Parkinson’s disease and progressive supranuclear palsy. Neuroimage Clin. 20, 1037–1043 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Gardner, R. C. et al. Intrinsic connectivity network disruption in progressive supranuclear palsy. Ann. Neurol. 73, 603–616 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Abos, A. et al. Disrupted structural connectivity of fronto-deep gray matter pathways in progressive supranuclear palsy. Neuroimage Clin. 23, 101899 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Whitwell, J. L. et al. Brain volume and flortaucipir analysis of progressive supranuclear palsy clinical variants. Neuroimage Clin. 25, 102152 (2020).

    Article  PubMed  Google Scholar 

  172. Longoni, G. et al. MRI measurements of brainstem structures in patients with Richardson’s syndrome, progressive supranuclear palsy-parkinsonism, and Parkinson’s disease. Mov. Disord. 26, 247–255 (2011).

    Article  PubMed  Google Scholar 

  173. Agosta, F. et al. The in vivo distribution of brain tissue loss in Richardson’s syndrome and PSP-parkinsonism: a VBM-DARTEL study. Eur. J. Neurosci. 32, 640–647 (2010).

    Article  PubMed  Google Scholar 

  174. Quattrone, A. et al. A new MR imaging index for differentiation of progressive supranuclear palsy-parkinsonism from Parkinson’s disease. Parkinsonism Relat. Disord. 54, 3–8 (2018).

    Article  PubMed  Google Scholar 

  175. Picillo, M. et al. Midbrain MRI assessments in progressive supranuclear palsy subtypes. J. Neurol. Neurosurg. Psychiatry 91, 98–103 (2020).

    Article  PubMed  Google Scholar 

  176. Caso, F. et al. Progression of white matter damage in progressive supranuclear palsy with predominant parkinsonism. Parkinsonism Relat. Disord. 49, 95–99 (2018).

    Article  PubMed  Google Scholar 

  177. Nigro, S. et al. Track density imaging: a reliable method to assess white matter changes in progressive supranuclear palsy with predominant parkinsonism. Parkinsonism Relat. Disord. 69, 23–29 (2019).

    Article  PubMed  Google Scholar 

  178. Hong, J. Y. et al. Comparison of regional brain atrophy and cognitive impairment between pure akinesia with gait freezing and Richardson’s syndrome. Front. Aging Neurosci. 7, 180 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Nakahara, K. et al. Diagnostic accuracy of MRI parameters in pure akinesia with gait freezing. J. Neurol. 267, 752–759 (2020).

    Article  CAS  PubMed  Google Scholar 

  180. Jabbari, E. et al. Diagnosis across the spectrum of progressive supranuclear palsy and corticobasal syndrome. JAMA Neurol. 77, 377–387 (2020).

    Article  PubMed  Google Scholar 

  181. Santos-Santos, M. A. et al. Features of patients with nonfluent/agrammatic primary progressive aphasia with underlying progressive supranuclear palsy pathology or corticobasal degeneration. JAMA Neurol. 73, 733–742 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Whitwell, J. L. et al. An evaluation of the progressive supranuclear palsy speech/language variant. Mov. Disord. Clin. Pract. 6, 452–461 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Boxer, A. L. et al. Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Arch. Neurol. 63, 81–86 (2006).

    Article  PubMed  Google Scholar 

  184. Whitwell, J. L. et al. Diffusion tensor imaging comparison of progressive supranuclear palsy and corticobasal syndromes. Parkinsonism Relat. Disord. 20, 493–498 (2014).

    Article  PubMed  Google Scholar 

  185. Boelmans, K. et al. Diffusion tensor imaging of the corpus callosum differentiates corticobasal syndrome from Parkinson’s disease. Parkinsonism Relat. Disord. 16, 498–502 (2010).

    Article  PubMed  Google Scholar 

  186. Borroni, B. et al. White matter changes in corticobasal degeneration syndrome and correlation with limb apraxia. Arch. Neurol. 65, 796–801 (2008).

    Article  PubMed  Google Scholar 

  187. Zhang, Y. et al. Progression of microstructural degeneration in progressive supranuclear palsy and corticobasal syndrome: a longitudinal diffusion tensor imaging study. PLoS ONE 11, e0157218 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Bharti, K. et al. Abnormal resting-state functional connectivity in progressive supranuclear palsy and corticobasal syndrome. Front. Neurol. 8, 248 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Ballarini, T. et al. Disentangling brain functional network remodeling in corticobasal syndrome – a multimodal MRI study. Neuroimage Clin. 25, 102112 (2020).

    Article  PubMed  Google Scholar 

  190. Whitwell, J. L. et al. Imaging correlates of pathology in corticobasal syndrome. Neurology 75, 1879–1887 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Josephs, K. A. et al. Anatomical differences between CBS-corticobasal degeneration and CBS-Alzheimer’s disease. Mov. Disord. 25, 1246–1252 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Josephs, K. A. et al. [18F]AV-1451 tau-PET uptake does correlate with quantitatively measured 4R-tau burden in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 132, 931–933 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Akdemir, U. O., Tokcaer, A. B., Karakus, A. & Kapucu, L. O. Brain 18F-FDG PET imaging in the differential diagnosis of parkinsonism. Clin. Nucl. Med. 39, e220–e226 (2014).

    Article  PubMed  Google Scholar 

  194. Eckert, T. et al. Abnormal metabolic networks in atypical parkinsonism. Mov. Disord. 23, 727–733 (2008).

    Article  PubMed  Google Scholar 

  195. Garraux, G. et al. Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. Neuroimage 10, 149–162 (1999).

    Article  CAS  PubMed  Google Scholar 

  196. Hosaka, K. et al. Voxel-based comparison of regional cerebral glucose metabolism between PSP and corticobasal degeneration. J. Neurol. Sci. 199, 67–71 (2002).

    Article  CAS  PubMed  Google Scholar 

  197. Juh, R. et al. Cerebral glucose metabolism in corticobasal degeneration comparison with progressive supranuclear palsy using statistical mapping analysis. Neurosci. Lett. 383, 22–27 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Mishina, M. et al. Midbrain hypometabolism as early diagnostic sign for progressive supranuclear palsy. Acta Neurol. Scand. 110, 128–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  199. Nagahama, Y. et al. Cerebral glucose metabolism in corticobasal degeneration: comparison with progressive supranuclear palsy and normal controls. Mov. Disord. 12, 691–696 (1997).

    Article  CAS  PubMed  Google Scholar 

  200. Salmon, E., Van der Linden, M. V. & Franck, G. Anterior cingulate and motor network metabolic impairment in progressive supranuclear palsy. Neuroimage 5, 173–178 (1997).

    Article  CAS  PubMed  Google Scholar 

  201. Takahashi, R. et al. Brain alterations and Mini-Mental State Examination in patients with progressive supranuclear palsy: voxel-based investigations using 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging. Dement. Geriatr. Cogn. Dis. Extra 1, 381–392 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Teune, L. K. et al. Typical cerebral metabolic patterns in neurodegenerative brain diseases. Mov. Disord. 25, 2395–2404 (2010).

    Article  PubMed  Google Scholar 

  203. Yamauchi, H. et al. Atrophy of the corpus callosum, cognitive impairment, and cortical hypometabolism in progressive supranuclear palsy. Ann. Neurol. 41, 606–614 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. Zwergal, A. et al. Postural imbalance and falls in PSP correlate with functional pathology of the thalamus. Neurology 77, 101–109 (2011).

    Article  CAS  PubMed  Google Scholar 

  205. Botha, H. et al. The pimple sign of progressive supranuclear palsy syndrome. Parkinsonism Relat. Disord. 20, 180–185 (2014).

    Article  PubMed  Google Scholar 

  206. Zalewski, N. et al. FDG-PET in pathologically confirmed spontaneous 4R-tauopathy variants. J. Neurol. 261, 710–716 (2014).

    Article  CAS  PubMed  Google Scholar 

  207. Ge, J. et al. Reproducible network and regional topographies of abnormal glucose metabolism associated with progressive supranuclear palsy: multivariate and univariate analyses in American and Chinese patient cohorts. Hum. Brain Mapp. 39, 2842–2858 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Laureys, S. et al. Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J. Neurol. 246, 1151–1158 (1999).

    Article  CAS  PubMed  Google Scholar 

  209. Cerami, C. et al. Individual brain metabolic signatures in corticobasal syndrome. J. Alzheimers Dis. 76, 517–528 (2020).

    Article  PubMed  Google Scholar 

  210. Benvenutto, A. et al. Clinical phenotypes in corticobasal syndrome with or without amyloidosis biomarkers. J. Alzheimers Dis. 74, 331–343 (2020).

    Article  PubMed  Google Scholar 

  211. Beyer, L. et al. Clinical routine FDG-PET imaging of suspected progressive supranuclear palsy and corticobasal degeneration: a gatekeeper for subsequent Tau-PET imaging? Front. Neurol. 9, 483 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Tripathi, M. et al. Differential diagnosis of parkinsonian syndromes using F-18 fluorodeoxyglucose positron emission tomography. Neuroradiology 55, 483–492 (2013).

    Article  PubMed  Google Scholar 

  213. Marti-Andres, G. et al. Multicenter validation of metabolic abnormalities related to PSP according to the MDS-PSP criteria. Mov. Disord. 35, 2009–2018 (2020).

    Article  CAS  PubMed  Google Scholar 

  214. Srulijes, K. et al. Fluorodeoxyglucose positron emission tomography in Richardson’s syndrome and progressive supranuclear palsy-parkinsonism. Mov. Disord. 27, 151–155 (2012).

    Article  PubMed  Google Scholar 

  215. Park, H. K. et al. Functional brain imaging in pure akinesia with gait freezing: [18F] FDG PET and [18F] FP-CIT PET analyses. Mov. Disord. 24, 237–245 (2009).

    Article  PubMed  Google Scholar 

  216. Dodich, A. et al. The clinico-metabolic correlates of language impairment in corticobasal syndrome and progressive supranuclear palsy. Neuroimage Clin. 24, 102009 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Cho, H. et al. Subcortical 18F-AV-1451 binding patterns in progressive supranuclear palsy. Mov. Disord. 32, 134–140 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Hammes, J. et al. Elevated in vivo [18F]-AV-1451 uptake in a patient with progressive supranuclear palsy. Mov. Disord. 32, 170–171 (2017).

    Article  PubMed  Google Scholar 

  219. Passamonti, L. et al. 18F-AV-1451 positron emission tomography in Alzheimer’s disease and progressive supranuclear palsy. Brain 140, 781–791 (2017).

    PubMed  PubMed Central  Google Scholar 

  220. Smith, R. et al. Increased basal ganglia binding of 18F-AV-1451 in patients with progressive supranuclear palsy. Mov. Disord. 32, 108–114 (2017).

    Article  CAS  PubMed  Google Scholar 

  221. Whitwell, J. L. et al. [18F]AV-1451 tau positron emission tomography in progressive supranuclear palsy. Mov. Disord. 32, 124–133 (2017).

    Article  CAS  PubMed  Google Scholar 

  222. Whitwell, J. L. et al. Pittsburgh compound B and AV-1451 positron emission tomography assessment of molecular pathologies of Alzheimer’s disease in progressive supranuclear palsy. Parkinsonism Relat. Disord. 48, 3–9 (2018).

    Article  PubMed  Google Scholar 

  223. Schonhaut, D. R. et al. (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann. Neurol. 82, 622–634 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Whitwell, J. L. et al. MRI outperforms [18F]AV-1451 PET as a longitudinal biomarker in progressive supranuclear palsy. Mov. Disord. 34, 105–113 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Sintini, I. et al. Multimodal neuroimaging relationships in progressive supranuclear palsy. Parkinsonism Relat. Disord. 66, 56–61 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Cope, T. E. et al. Tau burden and the functional connectome in Alzheimer’s disease and progressive supranuclear palsy. Brain 141, 550–567 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  227. Nicastro, N. et al. (18)F-AV1451 PET imaging and multimodal MRI changes in progressive supranuclear palsy. J. Neurol. 267, 341–349 (2020).

    Article  CAS  PubMed  Google Scholar 

  228. Ghirelli, A. et al. Sensitivity-specificity of tau and amyloid β positron emission tomography in frontotemporal lobar degeneration. Ann. Neurol. 88, 1009–1022 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. McMillan, C. T. et al. Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathol. 132, 935–937 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Lowe, V. J. et al. An autoradiographic evaluation of AV-1451 tau PET in dementia. Acta Neuropathol. Commun. 4, 58 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Marquie, M. et al. Pathologic correlations of [F-18]-AV-1451 imaging in non-Alzheimer tauopathies. Ann. Neurol. 133, 149–151 (2017).

    Google Scholar 

  232. Sander, K. et al. Characterization of tau positron emission tomography tracer [18F]AV-1451 binding to postmortem tissue in Alzheimer’s disease, primary tauopathies, and other dementias. Alzheimers Dement. 12, 1116–1124 (2016).

    Article  PubMed  Google Scholar 

  233. Brendel, M. et al. 18F-PI-2620 tau-PET in progressive supranuclear palsy – a cross-sectional multi-center study. JAMA Neurol. 77, 1408–1419 (2020).

    Article  PubMed  Google Scholar 

  234. Kroth, H. et al. Discovery and preclinical characterization of [(18)F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer’s disease and other tauopathies. Eur. J. Nucl. Med. Mol. Imaging 46, 2178–2189 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Beyer, L. et al. Early-phase [18F]PI-2620 tau-PET imaging as a surrogate marker of neuronal injury. Eur. J. Nucl. Med. Mol. Imaging 47, 2911–2922 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Endo, H. et al. In vivo binding of a tau imaging probe, [11C]PBB3, in patients with progressive supranuclear palsy. Mov. Disord. 34, 744–754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Schroter, N. et al. Tau imaging in the 4-repeat-tauopathies progressive supranuclear palsy and corticobasal syndrome: a 11C-pyridinyl-butadienyl-benzothiazole 3 PET pilot study. Clin. Nucl. Med. 45, 283–287 (2020).

    Article  PubMed  Google Scholar 

  238. Tagai, K. et al. High-contrast in vivo imaging of tau pathologies in Alzheimer’s and non-Alzheimer’s disease tauopathies. Neuron 109, 42–58.e8 (2021).

    Article  CAS  PubMed  Google Scholar 

  239. Ishiki, A. et al. Tau imaging with [18F]THK-5351 in progressive supranuclear palsy. Eur. J. Neurol. 24, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  240. Brendel, M. et al. [(18)F]-THK5351 PET correlates with topology and symptom severity in progressive supranuclear palsy. Front. Aging Neurosci. 9, 440 (2017).

    Article  PubMed  CAS  Google Scholar 

  241. Schonecker, S. et al. PET imaging of astrogliosis and tau facilitates diagnosis of parkinsonian syndromes. Front. Aging Neurosci. 11, 249 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  242. Ng, K. P. et al. Monoamine oxidase B inhibitor, selegiline, reduces (18)F-THK5351 uptake in the human brain. Alzheimers Res. Ther. 9, 25 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Ishiki, A. et al. Neuroimaging-pathological correlations of [(18)F]THK5351 PET in progressive supranuclear palsy. Acta Neuropathol. Commun. 6, 53 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Cho, H. et al. 18F-AV-1451 binds to motor-related subcortical gray and white matter in corticobasal syndrome. Neurology 89, 1170–1178 (2017).

    Article  CAS  PubMed  Google Scholar 

  245. Kikuchi, A. et al. In vivo visualization of tau deposits in corticobasal syndrome by 18F-THK5351 PET. Neurology 87, 2309–2316 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Smith, R. et al. In vivo retention of 18F-AV-1451 in corticobasal syndrome. Neurology 89, 845–853 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Maruyama, M. et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79, 1094–1108 (2013). One of the earliest studies of imaging tau in vivo.

    Article  CAS  PubMed  Google Scholar 

  248. Ezura, M. et al. Longitudinal changes in (18)F-THK5351 positron emission tomography in corticobasal syndrome. Eur. J. Neurol. 26, 1205–1211 (2019).

    Article  CAS  PubMed  Google Scholar 

  249. Ali, F. et al. [(18)F] AV-1451 uptake in corticobasal syndrome: the influence of beta-amyloid and clinical presentation. J. Neurol. 265, 1079–1088 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Vasilevskaya, A. et al. PET tau imaging and motor impairments differ between corticobasal syndrome and progressive supranuclear palsy with and without Alzheimer’s disease biomarkers. Front. Neurol. 11, 574 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  251. Hall, S. et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 69, 1445–1452 (2012).

    Article  PubMed  Google Scholar 

  252. Saijo, E. et al. 4-Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 139, 63–77 (2020).

    Article  CAS  PubMed  Google Scholar 

  253. Abdo, W. F., Bloem, B. R., Van Geel, W. J., Esselink, R. A. & Verbeek, M. M. CSF neurofilament light chain and tau differentiate multiple system atrophy from Parkinson’s disease. Neurobiol. Aging 28, 742–747 (2007).

    Article  CAS  PubMed  Google Scholar 

  254. Bridel, C. et al. Diagnostic value of cerebrospinal fluid neurofilament light protein in neurology: a systematic review and meta-analysis. JAMA Neurol. 76, 1035–1048 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Constantinescu, R., Rosengren, L., Johnels, B., Zetterberg, H. & Holmberg, B. Consecutive analyses of cerebrospinal fluid axonal and glial markers in Parkinson’s disease and atypical Parkinsonian disorders. Parkinsonism Relat. Disord. 16, 142–145 (2010).

    Article  PubMed  Google Scholar 

  256. Rojas, J. C. et al. Plasma neurofilament light chain predicts progression in progressive supranuclear palsy. Ann. Clin. Transl. Neurol. 3, 216–225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Donker Kaat, L. et al. Serum neurofilament light chain in progressive supranuclear palsy. Parkinsonism Relat. Disord. 56, 98–101 (2018).

    Article  PubMed  Google Scholar 

  258. Hansson, O. et al. Blood-based NfL: a biomarker for differential diagnosis of parkinsonian disorder. Neurology 88, 930–937 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Magdalinou, N., Lees, A. J. & Zetterberg, H. Cerebrospinal fluid biomarkers in parkinsonian conditions: an update and future directions. J. Neurol. Neurosurg. Psychiatry 85, 1065–1075 (2014).

    Article  PubMed  Google Scholar 

  260. Magdalinou, N. K. et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry 86, 1240–1247 (2015).

    Article  CAS  PubMed  Google Scholar 

  261. Rojas, J. C. et al. CSF neurofilament light chain and phosphorylated tau 181 predict disease progression in PSP. Neurology 90, e273–e281 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  262. Zetterberg, H. Neurofilament light: a dynamic cross-disease fluid biomarker for neurodegeneration. Neuron 91, 1–3 (2016).

    Article  CAS  PubMed  Google Scholar 

  263. Boxer, A. L. et al. Davunetide in patients with progressive supranuclear palsy: a randomised, double-blind, placebo-controlled phase 2/3 trial. Lancet Neurol. 13, 676–685 (2014). One of the earliest negative neuroprotective trials in PSP, providing important insights for further studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Boxer, A. L. et al. Advances in progressive supranuclear palsy: new diagnostic criteria, biomarkers, and therapeutic approaches. Lancet Neurol. 16, 552–563 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Lamb, R., Rohrer, J. D., Lees, A. J. & Morris, H. R. Progressive supranuclear palsy and corticobasal degeneration: pathophysiology and treatment options. Curr. Treat. Options Neurol. 18, 42 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  266. VandeVrede, L., Ljubenkov, P. A., Rojas, J. C., Welch, A. E. & Boxer, A. L. Four-repeat tauopathies: current management and future treatments. Neurotherapeutics 17, 1563–1581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Marsili, L., Suppa, A., Berardelli, A. & Colosimo, C. Therapeutic interventions in parkinsonism: corticobasal degeneration. Parkinsonism Relat. Disord. 22, S96–S100 (2016).

    Article  PubMed  Google Scholar 

  268. Stamelou, M. & Bhatia, K. P. Atypical parkinsonism–new advances. Curr. Opin. Neurol. 29, 480–485 (2016).

    Article  PubMed  Google Scholar 

  269. Stamelou, M. & Hoglinger, G. A review of treatment options for progressive supranuclear palsy. CNS Drugs 30, 629–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  270. Stamelou, M. & Bhatia, K. P. Atypical parkinsonism: diagnosis and treatment. Neurol. Clin. 33, 39–56 (2015).

    Article  PubMed  Google Scholar 

  271. Scelzo, E. et al. Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. J. Neurol. Neurosurg. Psychiatry 88, 613–616 (2017).

    Article  PubMed  Google Scholar 

  272. Moretti, D. V. Available and future treatments for atypical parkinsonism. A systematic review. CNS Neurosci. Ther. 25, 159–174 (2019).

    Article  PubMed  Google Scholar 

  273. Galazky, I. et al. Deep brain stimulation of the pedunculopontine nucleus for treatment of gait and balance disorder in progressive supranuclear palsy: effects of frequency modulations and clinical outcome. Parkinsonism Relat. Disord. 50, 81–86 (2018).

    Article  PubMed  Google Scholar 

  274. Dayal, V. et al. Pedunculopontine nucleus deep brain stimulation for parkinsonian disorders: a case series. Stereotact. Funct. Neurosurg. 99, 287–294 (2020).

    Article  PubMed  Google Scholar 

  275. Kompoliti, K. et al. Pharmacological therapy in progressive supranuclear palsy. Arch. Neurol. 55, 1099–1102 (1998). One of the earliest of few studies of pharmacological treatments in autopsy-confirmed PSP.

    Article  CAS  PubMed  Google Scholar 

  276. Rittman, T., Coyle-Gilchrist, I. T. & Rowe, J. B. Managing cognition in progressive supranuclear palsy. Neurodegener. Dis. Manag. 6, 499–508 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  277. Litvan, I. et al. Randomized placebo-controlled trial of donepezil in patients with progressive supranuclear palsy. Neurology 57, 467–473 (2001).

    Article  CAS  PubMed  Google Scholar 

  278. Fabbrini, G. et al. Donepezil in the treatment of progressive supranuclear palsy. Acta Neurol. Scand. 103, 123–125 (2001).

    Article  CAS  PubMed  Google Scholar 

  279. Giagkou, N. & Stamelou, M. Emerging drugs for progressive supranuclear palsy. Expert. Opin. Emerg. Drugs 24, 83–92 (2019).

    Article  CAS  PubMed  Google Scholar 

  280. Giagkou, N. & Stamelou, M. Therapeutic management of the overlapping syndromes of atypical parkinsonism. CNS Drugs 32, 827–837 (2018).

    Article  PubMed  Google Scholar 

  281. Ogawa, T. et al. Prevalence and treatment of LUTS in patients with Parkinson disease or multiple system atrophy. Nat. Rev. Urol. 14, 79–89 (2017).

    Article  CAS  PubMed  Google Scholar 

  282. Batla, A., Tayim, N., Pakzad, M. & Panicker, J. N. Treatment options for urogenital dysfunction in Parkinson’s disease. Curr. Treat. Options Neurol. 18, 45–45 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  283. Giannantoni, A. et al. Botulinum toxin A for overactive bladder and detrusor muscle overactivity in patients with Parkinson’s disease and multiple system atrophy. J. Urol. 182, 1453–1457 (2009).

    Article  PubMed  Google Scholar 

  284. Bensimon, G. et al. Riluzole treatment, survival and diagnostic criteria in Parkinson plus disorders: the NNIPPS study. Brain 132, 156–171 (2009).

    Article  PubMed  Google Scholar 

  285. Stamelou, M. et al. In vivo evidence for cerebral depletion in high-energy phosphates in progressive supranuclear palsy. J. Cereb. Blood Flow. Metab. 29, 861–870 (2009).

    Article  CAS  PubMed  Google Scholar 

  286. Stamelou, M. et al. Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trial. Mov. Disord. 23, 942–949 (2008).

    Article  PubMed  Google Scholar 

  287. Apetauerova, D. et al. CoQ10 in progressive supranuclear palsy: a randomized, placebo-controlled, double-blind trial. Neurol. Neuroimmunol. Neuroinflamm 3, e266 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  288. Serenó, L. et al. A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo. Neurobiol. Dis. 35, 359–367 (2009).

    Article  PubMed  CAS  Google Scholar 

  289. Tolosa, E. et al. A phase 2 trial of the GSK-3 inhibitor tideglusib in progressive supranuclear palsy. Mov. Disord. 29, 470–478 (2014).

    Article  CAS  PubMed  Google Scholar 

  290. Hoglinger, G. U. et al. Tideglusib reduces progression of brain atrophy in progressive supranuclear palsy in a randomized trial. Mov. Disord. 29, 479–487 (2014).

    Article  PubMed  CAS  Google Scholar 

  291. Leclair-Visonneau, L. et al. Randomized placebo-controlled trial of sodium valproate in progressive supranuclear palsy. Clin. Neurol. Neurosurg. 146, 35–39 (2016).

    Article  PubMed  Google Scholar 

  292. Min, S. W. et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat. Med. 21, 1154–1162 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. VandeVrede, L. et al. Open-label phase 1 futility studies of salsalate and young plasma in progressive supranuclear palsy. Mov. Disord. Clin. Pract. 7, 440–447 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  294. Tsai, R. M. et al. Reactions to multiple ascending doses of the microtubule stabilizer TPI-287 in patients with Alzheimer disease, progressive supranuclear palsy, and corticobasal syndrome: a randomized clinical trial. JAMA Neurol. 77, 215–224 (2020).

    Article  PubMed  Google Scholar 

  295. Yanamandra, K. et al. Anti-tau antibody reduces insoluble tau and decreases brain atrophy. Ann. Clin. Transl. Neurol. 2, 278–288 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  296. Yanamandra, K. et al. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 80, 402–414 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  297. Bright, J. et al. Human secreted tau increases amyloid-beta production. Neurobiol. Aging 36, 693–709 (2015).

    Article  CAS  PubMed  Google Scholar 

  298. Boxer, A. L. et al. Safety of the tau-directed monoclonal antibody BIIB092 in progressive supranuclear palsy: a randomised, placebo-controlled, multiple ascending dose phase 1b trial. Lancet Neurol. 18, 549–558 (2019).

    Article  CAS  PubMed  Google Scholar 

  299. Dam T., et al. Safety and efficacy of anti-tau monoclonal antibody gosuranemab in progressive supranuclear palsy: a phase 2, randomized, placebo-controlled trial. Nat. Med. https://doi.org/10.1038/s41591-021-01455-x (2020).

  300. West, T. et al. Preclinical and clinical development of ABBV-8E12, a humanized anti-tau antibody, for treatment of Alzheimer’s disease and other tauopathies. J. Prev. Alzheimers Dis. 4, 236–241 (2017).

    CAS  PubMed  Google Scholar 

  301. Höglinger, G. U. et al. Safety and efficacy of tilavonemab in progressive supranuclear palsy: a phase 2, randomised, placebo-controlled trial. Lancet Neurol. 20, 182–192 (2021).

    Article  PubMed  Google Scholar 

  302. Courade, J. P. et al. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer tau. Acta Neuropathol. 136, 729–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Albert, M. et al. Prevention of tau seeding and propagation by immunotherapy with a central tau epitope antibody. Brain 142, 1736–1750 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  304. Novak, P. et al. Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. 16, 123–134 (2017).

    Article  CAS  PubMed  Google Scholar 

  305. Zhang, H. et al. Tolfenamic acid inhibits GSK-3β and PP2A mediated tau hyperphosphorylation in Alzheimer’s disease models. J. Physiol. Sci. 70, 29 (2020).

    Article  CAS  PubMed  Google Scholar 

  306. Medina, M. An overview on the clinical development of tau-based therapeutics. Int J Mol. Sci. 19, 1160 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  307. Sud, R., Geller, E. T. & Schellenberg, G. D. Antisense-mediated exon skipping decreases tau protein expression: a potential therapy for tauopathies. Mol. Ther. Nucleic Acids 3, e180 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Yuzwa, S. A. et al. Increasing O-GlcNAc slows neurodegeneration and stabilizes tau against aggregation. Nat. Chem. Biol. 8, 393–399 (2012).

    Article  CAS  PubMed  Google Scholar 

  309. Ryan, J. M. et al. Phase 1 study in healthy volunteers of the O-GlcNAcase inhibitor ASN120290 as a novel therapy for progressive supranuclear palsy and related tauopathies [abstract O1-12-05]. Alzheimers Dement. 14(7S), 251 (2018).

    Google Scholar 

  310. Piot, I. et al. The progressive supranuclear palsy clinical deficits scale. Mov. Disord. 35, 650–661 (2020).

    Article  PubMed  Google Scholar 

  311. Brittain, C. et al. Severity dependent distribution of impairments in PSP and CBS: interactive visualizations. Parkinsonism Relat. Disord. 60, 138–145 (2019).

    Article  PubMed  Google Scholar 

  312. Grötsch, M. T. et al. A modified progressive supranuclear palsy rating scale. Mov. Disord. 36, 1203–1215 (2021).

    Article  PubMed  Google Scholar 

  313. Lang, A. E. et al. The cortical basal ganglia functional scale (CBFS): development and preliminary validation. Parkinsonism Relat. Disord. 79, 121–126 (2020).

    Article  PubMed  Google Scholar 

  314. Passamonti, L. et al. [(11)C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology 90, e1989–e1996 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Holland, N. et al. Synaptic loss in primary tauopathies revealed by [(11)C]UCB-J positron emission tomography. Mov. Disord. 35, 1834–1842 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Nieforth, K. & Golbe, L. I. Retrospective study of drug response in 87 patients with progressive supranuclear palsy. Clin. Neuropharmacol. 16, 338–346 (1993).

    Article  CAS  PubMed  Google Scholar 

  317. Muller, J., Wenning, G. K., Wissel, J., Seppi, K. & Poewe, W. Botulinum toxin treatment in atypical parkinsonian disorders associated with disabling focal dystonia. J. Neurol. 249, 300–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  318. Jankovic, J. & Brin, M. F. Therapeutic uses of botulinum toxin. N. Engl. J. Med. 324, 1186–1194 (1991).

    Article  CAS  PubMed  Google Scholar 

  319. Piccione, F., Mancini, E., Tonin, P. & Bizzarini, M. Botulinum toxin treatment of apraxia of eyelid opening in progressive supranuclear palsy: report of two cases. Arch. Phys. Med. Rehabil. 78, 525–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  320. Krack, P. & Marion, M. H. “Apraxia of lid opening,” a focal eyelid dystonia: clinical study of 32 patients. Mov. Disord. 9, 610–615 (1994).

    Article  CAS  PubMed  Google Scholar 

  321. Rohrer, G., Hoglinger, G. U. & Levin, J. Symptomatic therapy of multiple system atrophy. Auton. Neurosci. 211, 26–30 (2018).

    Article  PubMed  Google Scholar 

  322. Armstrong, M. J. Diagnosis and treatment of corticobasal degeneration topical collection on movement disorders. Curr. Treat. Options. Neurol. 16, 282 (2014).

    Article  PubMed  Google Scholar 

  323. Bhatia, K. P. & Stamelou, M. Nonmotor features in atypical parkinsonism. Int. Rev. Neurobiol. 134, 1285–1301 (2017).

    Article  PubMed  Google Scholar 

  324. Gómez-Caravaca, M. T. et al. The use of botulinum toxin in the treatment of sialorrhea in parkinsonian disorders. Neurol. Sci. 36, 275–279 (2015).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.W. is supported by the National Institutes of Health (NIH) grants R01-NS89757, R01-DC12519 and R01-DC14942. G.G.K. is supported by the Rossy Foundation, “Rossy PSP Program”, the Edmond J. Safra Foundation and the Bishop Karl Golser Award. G.U.H. was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the framework of the Munich Cluster for Systems Neurology (EXC 2145 SyNergy; ID 390857198), DFG (HO2402/18-1), the German Federal Ministry of Education and Research (BMBF, 01KU1403A; 01EK1605A), the EU/EFPIA/Innovative Medicines Initiative [2] Joint Undertaking (IMPRIND grant 116060), the VolkswagenStiftung/Lower Saxony Ministry for Science/Petermax-Müller Foundation (Aetiology and Therapy of Synucleinopathies and Tauopathies).

Author information

Authors and Affiliations

Authors

Contributions

M.S. researched data for the article and made substantial contributions to the content. All authors contributed to writing of the manuscript and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Maria Stamelou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks C. Colosimo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Online tool for diagnosis of PSP: https://qxmd.com/calculate/calculator_567/

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stamelou, M., Respondek, G., Giagkou, N. et al. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 17, 601–620 (2021). https://doi.org/10.1038/s41582-021-00541-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00541-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing