Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced technologies for the preservation of mammalian biospecimens

Abstract

The three classical core technologies for the preservation of live mammalian biospecimens—slow freezing, vitrification and hypothermic storage—limit the biomedical applications of biospecimens. In this Review, we summarize the principles and procedures of these three technologies, highlight how their limitations are being addressed via the combination of microfabrication and nanofabrication, materials science and thermal-fluid engineering and discuss the remaining challenges.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preservation of mammalian biospecimens.
Fig. 2: Phase diagrams, and thermal and osmotic time courses, for five main biospecimen-preservation methods.
Fig. 3: Slow freezing.
Fig. 4: Vitrification.
Fig. 5: Hypothermic storage.

Similar content being viewed by others

References

  1. Fischbach, M. A., Bluestone, J. A. & Lim, W. A. Cell-based therapeutics: the next pillar of medicine. Sci. Transl Med. 5, 179ps177 (2013).

    Article  CAS  Google Scholar 

  2. Singh, V. K., Kalsan, M., Kumar, N., Saini, A. & Chandra, R. Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Front. Cell Dev. Biol. 3, 2 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Campbell, L. D. et al. Development of the ISBER best practices for repositories: collection, storage, retrieval and distribution of biological materials for research. Biopreserv. Biobank. 10, 232–233 (2012).

    Article  PubMed  Google Scholar 

  4. Jing, L., Yao, L., Zhao, M., Peng, L.-P. & Liu, M. Organ preservation: from the past to the future. Acta Pharmacol. Sin. 39, 845–857 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Massarotti, C. et al. State of the art on oocyte cryopreservation in female cancer patients: a critical review of the literature. Cancer Treat. Rev. 57, 50–57 (2017).

    Article  PubMed  Google Scholar 

  6. Giwa, S. et al. The promise of organ and tissue preservation to transform medicine. Nat. Biotechnol. 35, 530–542 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Organ Donation Statistics. (Health Resources & Services Administration, 2019); https://www.organdonor.gov/statistics-stories/statistics.html

  8. Evans, R. W. in Xenotransplantation (ed. Platt, J. L.) 29–51 (2000).

  9. Aijaz, A. et al. Biomanufacturing for clinically advanced cell therapies. Nat. Biomed. Eng. 2, 362–376 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yong, K. W. et al. Cryopreservation of human mesenchymal stem cells for clinical applications: current methods and challenges. Biopreserv. Biobank. 13, 231–239 (2015).

    Article  PubMed  Google Scholar 

  11. Chi, H.-J. et al. Cryopreservation of human embryos using ethylene glycol in controlled slow freezing. Hum. Reprod. 17, 2146–2151 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Pegg, D. E. Principles of cryopreservation. Methods Mol. Biol. 368, 39–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Fuller, B. et al. Applications and optimization of cryopreservation technologies to cellular therapeutics. Cell Gene Ther. Insights 3, 359–378 (2017).

    Article  Google Scholar 

  14. Rezazadeh Valojerdi, M., Eftekhari-Yazdi, P., Karimian, L., Hassani, F. & Movaghar, B. Vitrification versus slow freezing gives excellent survival, post warming embryo morphology and pregnancy outcomes for human cleaved embryos. J. Assist. Reprod. Genet. 26, 347–354 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Glujovsky, D. et al. Vitrification versus slow freezing for women undergoing oocyte cryopreservation. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD010047.pub2 (2014).

  16. Shi, Q., Xie, Y., Wang, Y. & Li, S. Vitrification versus slow freezing for human ovarian tissue cryopreservation: a systematic review and meta-anlaysis. Sci. Rep. 7, 8538 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Rall, W. F. & Fahy, G. M. Ice-free cryopreservation of mouse embryos at −196 °C by vitrification. Nature 313, 573–575 (1985).

    Article  CAS  PubMed  Google Scholar 

  18. He, X. M., Park, E. Y. H., Fowler, A., Yarmush, M. L. & Toner, M. Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology 56, 223–232 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gain, P. et al. Global survey of corneal transplantation and eye banking. JAMA Ophthalmol. 134, 167–173 (2016).

    Article  PubMed  Google Scholar 

  20. Guarrera, J. V. et al. Hypothermic machine preservation facilitates successful transplantation of ‘orphan’ extended criteria donor livers. Am. J. Transpl. 15, 161–169 (2015).

    Article  CAS  Google Scholar 

  21. Wang, W., Penland, L., Gokce, O., Croote, D. & Quake, S. R. High fidelity hypothermic preservation of primary tissues in organ transplant preservative for single cell transcriptome analysis. BMC Genomics 19, 140 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Coutts, M., Hinton, S., Zheng, J. & Scharp, D. W. Hypothermic storage and preservation of human pancreatic acinar tissue. Vitr. Cell Dev. Biol. Anim. 43, 2–6 (2007).

    Article  CAS  Google Scholar 

  23. Elliott, G. D., Wang, S. & Fuller, B. J. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures. Cryobiology 76, 74–91 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Bhattacharya, M. S. A review on cryoprotectant and its modern implication in cryonics. Asian J. Pharm. https://doi.org/10.22377/ajp.v10i3.721 (2016).

  25. Akiyama, Y., Shinose, M., Watanabe, H., Yamada, S. & Kanda, Y. Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proc. Natl Acad. Sci. USA 116, 7738–7743 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mazur, P. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247, C125–C142 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. He, X. Thermostability of biological systems: fundamentals, challenges, and quantification. Open Biomed. Eng. J. 5, 47–73 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gardner, D. K., Lane, M., Stevens, J. & Schoolcraft, W. B. Changing the start temperature and cooling rate in a slow-freezing protocol increases human blastocyst viability. Fertil. Steril. 79, 407–410 (2003).

    Article  PubMed  Google Scholar 

  29. Jang, T. H. et al. Cryopreservation and its clinical applications. Integr. Med. Res. 6, 12–18 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Mahadevan, M. & Trounson, A. O. Effect of cooling, freezing and thawing rates and storage conditions on preservation of human spermatozoa. Andrologia 16, 52–60 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Dumont, F., Marechal, P.-A. & Gervais, P. Cell size and water permeability as determining factors for cell viability after freezing at different cooling rates. Appl. Environ. Microbiol. 70, 268–272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Best, B. P. Cryoprotectant toxicity: facts, issues, and questions. Rejuvenation Res. 18, 422–436 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Karlsson, J. O., Szurek, E. A., Higgins, A. Z., Lee, S. R. & Eroglu, A. Optimization of cryoprotectant loading into murine and human oocytes. Cryobiology 68, 18–28 (2014).

    Article  CAS  PubMed  Google Scholar 

  34. Davidson, A. F., Glasscock, C., McClanahan, D. R., Benson, J. D. & Higgins, A. Z. Toxicity minimized cryoprotectant addition and removal procedures for adherent endothelial cells. PLoS ONE 10, e0142828 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Peyridieu, J. F. et al. Critical cooling and warming rates to avoid ice crystallization in small pieces of mammalian organs permeated with cryoprotective agents. Cryobiology 33, 436–446 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Seki, S. & Mazur, P. The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology 59, 75–82 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Huang, H. et al. Predehydration and ice seeding in the presence of trehalose enable cell cryopreservation. ACS Biomater. Sci. Eng. 3, 1758–1768 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Southard, J. H., Senzig, K. A. & Belzer, F. O. Effects of hypothermia on canine kidney mitochondria. Cryobiology 17, 148–153 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Usta, O. B. et al. Supercooling as a viable non-freezing cell preservation method of rat hepatocytes. PLoS ONE 8, e69334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Colletti, L. M. et al. The production of tumor necrosis factor alpha and the development of a pulmonary capillary injury following hepatic ischemia/reperfusion. Transplantation 49, 268–272 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Strüber, M. et al. Inhaled nitric oxide as a prophylactic treatment against reperfusion injury of the lung. Thorac. Cardiovasc. Surg. 47, 179–182 (1999).

    Article  PubMed  Google Scholar 

  42. Hausenloy, D. J. & Yellon, D. M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 13, 193–209 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Koyama, I., Bulkley, G. B., Williams, G. M. & Im, M. J. The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation 40, 590–595 (1985).

    Article  CAS  PubMed  Google Scholar 

  44. Ferng, A. S. et al. Novel vs clinical organ preservation solutions: improved cardiac mitochondrial protection. J. Cardiothorac. Surg. 12, 7 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wekerle, T., Segev, D., Lechler, R. & Oberbauer, R. Strategies for long-term preservation of kidney graft function. Lancet 389, 2152–2162 (2017).

    Article  PubMed  Google Scholar 

  46. Tomalty, H. E. et al. Kidney preservation at subzero temperatures using a novel storage solution and insect ice-binding proteins. Cryo Lett. 38, 100 (2017).

    CAS  Google Scholar 

  47. Casula, E. et al. Osmotic behaviour of human mesenchymal stem cells: implications for cryopreservation. PLoS ONE 12, e0184180 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Ross-Rodriguez, L. U., Elliott, J. A. & McGann, L. E. Characterization of cryobiological responses in tf-1 cells using interrupted freezing procedures. Cryobiology 60, 106–116 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Casula, E., Asuni, G. P., Sogos, V. & Cincotti, A. hMSCs from UCB: isolation, characterization and determination of osmotic properties for optimal cryopreservation. Chem. Eng. Trans. 43, 265–270 (2015).

    Google Scholar 

  50. Ebertz, S. L. & McGann, L. E. Osmotic parameters of cells from a bioengineered human corneal equivalent and consequences for cryopreservation. Cryobiology 45, 109–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, H. H., Purtteman, J. J., Heimfeld, S., Folch, A. & Gao, D. Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties. Cryobiology 55, 200–209 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Niu, D., Zhao, G., Liu, X., Zhou, P. & Cao, Y. Prevention of osmotic injury to human umbilical vein endothelial cells for biopreservation: a first step toward biobanking of endothelial cells for vascular tissue engineering. Tissue Eng. Part C Methods 22, 270–279 (2016).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, H.-h et al. A microfluidic study of mouse dendritic cell membrane transport properties of water and cryoprotectants. Int. J. Heat. Mass Transf. 51, 5687–5694 (2008).

    Article  CAS  Google Scholar 

  54. Tseng, H. Y. et al. A microfluidic study of megakaryocytes membrane transport properties to water and dimethyl sulfoxide at suprazero and subzero temperatures. Biopreserv. Biobank. 9, 355–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, W. et al. High-precision approach based on microfluidic perfusion chamber for quantitative analysis of biophysical properties of cell membrane. Int. J. Heat. Mass Transf. 86, 869–879 (2015).

    Article  CAS  Google Scholar 

  56. Lyu, S.-R., Chen, W.-J. & Hsieh, W.-H. Measuring transport properties of cell membranes by a PDMS microfluidic device with controllability over changing rate of extracellular solution. Sens. Actuators B 197, 28–34 (2014).

    Article  CAS  Google Scholar 

  57. Berthier, E. et al. Kit-on-a-lid-assays for accessible self-contained cell assays. Lab Chip 13, 424–431 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Li, L., Lv, X., Guo, H., Shi, X. & Liu, J. On-chip direct freezing and thawing of mammalian cells. RSC Adv. 4, 34443–34447 (2014).

    Article  CAS  Google Scholar 

  59. Deutsch, M. et al. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. I: methodology. BMC Cell Biol. 11, 54 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Afrimzon, E. et al. The individual-cell-based cryo-chip for the cryopreservation, manipulation and observation of spatially identifiable cells. II: functional activity of cryopreserved cells. BMC Cell Biol. 11, 83 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Roach, K. L. et al. High-throughput single cell arrays as a novel tool in biopreservation. Cryobiology 58, 315–321 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zou, Y., Yin, T., Chen, S., Yang, J. & Huang, W. On-chip cryopreservation: a novel method for ultra-rapid cryoprotectant-free cryopreservation of small amounts of human spermatozoa. PLoS ONE 8, e61593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, S., Liu, W. & Lin, L. On-chip cryopreservation of living cells. J. Assoc. Lab. Autom. 15, 99–106 (2010).

    Article  CAS  Google Scholar 

  64. Bissoyi, A., Bit, A., Singh, B. K., Singh, A. K. & Patra, P. K. Enhanced cryopreservation of MSCs in microfluidic bioreactor by regulated shear flow. Sci. Rep. 6, 35416 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yang, G., Zhang, A., Xu, L. X. & He, X. Modeling the cell-type dependence of diffusion-limited intracellular ice nucleation and growth during both vitrification and slow freezing. J. Appl. Phys. 105, 114701 (2009).

    Article  CAS  Google Scholar 

  66. Karlsson, J., Cravalho, E. & Toner, M. A model of diffusion‐limited ice growth inside biological cells during freezing. J. Appl. Phys. 75, 4442–4455 (1994).

    Article  Google Scholar 

  67. Kawata, T. et al. Water molecule movement by a magnetic field in freezing for tooth banking. Biomed. Res. 21, 351–354 (2010).

    Google Scholar 

  68. Kaku, M. et al. Cryopreservation of periodontal ligament cells with magnetic field for tooth banking. Cryobiology 61, 73–78 (2010).

    Article  CAS  PubMed  Google Scholar 

  69. Abedini, S. et al. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues. Cryobiology 62, 181–187 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Lee, S. Y. et al. Magnetic cryopreservation for dental pulp stem cells. Cells Tissues Organs 196, 23–33 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Conde, M. C. M. et al. Does cryopreservation affect the biological properties of stem cells from dental tissues? A systematic review. Braz. Dent. J. 27, 633–640 (2016).

    Article  PubMed  Google Scholar 

  72. Otero, L., Rodríguez, A. C., Pérez‐Mateos, M. & Sanz, P. D. Effects of magnetic fields on freezing: application to biological products. Compr. Rev. Food Sci. Food Saf. 15, 646–667 (2016).

    Article  PubMed  Google Scholar 

  73. Meng, L. et al. Development of a microfluidic device for automated vitrification human embryo. Fertil. Steril. 96, S207 (2011).

    Article  Google Scholar 

  74. Heo, Y. S. et al. Controlled loading of cryoprotectants (CPAS) to oocyte with linear and complex CPA profiles on a microfluidic platform. Lab Chip 11, 3530–3537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Song, Y. S. et al. Microfluidics for cryopreservation. Lab Chip 9, 1874–1881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lai, D., Ding, J., Smith, G. W., Smith, G. D. & Takayama, S. Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification. Hum. Reprod. 30, 37–45 (2015).

    Article  CAS  PubMed  Google Scholar 

  77. Swain, J. E., Lai, D., Takayama, S. & Smith, G. D. Thinking big by thinking small: application of microfluidic technology to improve art. Lab Chip 13, 1213–1224 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, G. & Fu, J. Microfluidics for cryopreservation. Biotechnol. Adv. 35, 323–336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, W., Yang, G., Zhang, A., Xu, L. X. & He, X. Preferential vitrification of water in small alginate microcapsules significantly augments cell cryopreservation by vitrification. Biomed. Microdevices 12, 89–96 (2010).

    Article  PubMed  Google Scholar 

  80. Huang, H. et al. Alginate hydrogel microencapsulation inhibits devitrification and enables large-volume low-CPA cell vitrification. Adv. Funct. Mater. 25, 6939–6850 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Zhao, G., Liu, X., Zhu, K. & He, X. Hydrogel encapsulation facilitates rapid-cooling cryopreservation of stem cell-laden core-shell microcapsules as cell-biomaterial constructs. Adv. Healthc. Mater. 6, 1700988 (2017).

    Article  CAS  Google Scholar 

  82. Chen, W., Shu, Z., Gao, D. & Shen, A. Q. Sensing and sensibility: single-islet-based quality control assay of cryopreserved pancreatic islets with functionalized hydrogel microcapsules. Adv. Health. Mater. 5, 223–231 (2016).

    Article  CAS  Google Scholar 

  83. Cagol, N., Bonani, W., Maniglio, D., Migliaresi, C. & Motta, A. Effect of cryopreservation on cell-laden hydrogels: comparison of different cryoprotectants. Tissue Eng. Part C Methods 24, 20–31 (2018).

    Article  CAS  PubMed  Google Scholar 

  84. Lan, D. et al. Using a novel supramolecular gel cryopreservation system in microchannel to minimize the cell injury. Langmuir 34, 5088–5096 (2018).

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, C. et al. Hydrogel cryopreservation system: an effective method for cell storage. Int. J. Mol. Sci. 19, 3330 (2018).

    Article  PubMed Central  CAS  Google Scholar 

  86. Huang, H. & He, X. in Multiscale Technologies for Cryomedicine: Implementation from Nano to Macroscale (eds He, X. & Bischof, J. C.) Ch. 4 (2016).

  87. Demirci, U. & Montesano, G. Cell encapsulating droplet vitrification. Lab Chip 7, 1428–1433 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, B.-H. et al. Effect of droplet vitrification on mitochondrial membrane potential and developmental competence in two-cell mouse embryos. Anim. Cells Syst. 15, 287–294 (2011).

    Article  CAS  Google Scholar 

  89. An, L. et al. Efficient cryopreservation of mouse embryos by modified droplet vitrification (MDV). Cryobiology 71, 70–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  90. Zhang, X. et al. Nanoliter droplet vitrification for oocyte cryopreservation. Nanomedicine 7, 553–564 (2012).

    Article  CAS  PubMed  Google Scholar 

  91. Samot, J. et al. Blood banking in living droplets. PLoS ONE 6, e17530 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Song, Y. S. et al. Vitrification and levitation of a liquid droplet on liquid nitrogen. Proc. Natl Acad. Sci. USA 107, 4596–4600 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. de Vries, R. J. et al. Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir 35, 7354–7363 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Tedder, R. S. et al. Hepatitis B transmission from contaminated cryopreservation tank. Lancet 346, 137–140 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Grout, B. W. W. & Morris, G. Contaminated liquid nitrogen vapour as a risk factor in pathogen transfer. Theriogenology 71, 1079–1082 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Kuleshova, L. & Shaw, J. M. A strategy for rapid cooling of mouse embryos within a double straw to eliminate the risk of contamination during storage in liquid nitrogen. Hum. Reprod. 15, 2604–2609 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Shi, M. et al. High-throughput non-contact vitrification of cell-laden droplets based on cell printing. Sci. Rep. 5, 17928 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Marković, Z., Chatelet, P., Sylvestre, I., Kontić, J. & Engelmann, F. Cryopreservation of grapevine (Vitis vinifera L.) in vitro shoot tips. Open Life Sci. 8, 993–1000 (2013).

    Article  CAS  Google Scholar 

  99. Bi, W.-L., Hao, X.-Y., Cui, Z.-H., Volk, G. M. & Wang, Q.-C. Droplet-vitrification cryopreservation of in vitro-grown shoot tips of grapevine (Vitis spp.). In Vitro Cell. Dev. Biol. Plant 54, 590–599 (2018).

    Article  Google Scholar 

  100. Souza, F. V. D. et al. Droplet-vitrification and morphohistological studies of cryopreserved shoot tips of cultivated and wild pineapple genotypes. Plant Cell Tissue Organ Cult. 124, 351–360 (2016).

    Article  CAS  Google Scholar 

  101. Jin, B., Kleinhans, F. W. & Mazur, P. Survivals of mouse oocytes approach 100% after vitrification in 3-fold diluted media and ultra-rapid warming by an IR laser pulse. Cryobiology 68, 419–430 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Khosla, K., Wang, Y., Hagedorn, M., Qin, Z. & Bischof, J. Gold nanorod induced warming of embryos from the cryogenic state enhances viability. ACS Nano 11, 7869–7878 (2017).

    Article  CAS  PubMed  Google Scholar 

  103. Robinson, M. P., Wusteman, M. C., Wang, L. & Pegg, D. E. Electromagnetic re-warming of cryopreserved tissues: effect of choice of cryoprotectant and sample shape on uniformity of heating. Phys. Med. Biol. 47, 2311–2325 (2002).

    Article  PubMed  Google Scholar 

  104. Manuchehrabadi, N. et al. Improved tissue cryopreservation using inductive heating of magnetic nanoparticles. Sci. Transl. Med. 9, eaah4586 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wang, J., Zhao, G., Zhang, Z., Xu, X. & He, X. Magnetic induction heating of superparamagnetic nanoparticles during rewarming augments the recovery of hUCM-MSCs cryopreserved by vitrification. Acta Biomater. 33, 264–274 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Eskandari, N., Marquez-Curtis, L. A., McGann, L. E. & Elliott, J. A. W. Cryopreservation of human umbilical vein and porcine corneal endothelial cell monolayers. Cryobiology 85, 63–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Jomha, N. M. et al. Vitrification of intact human articular cartilage. Biomaterials 33, 6061–6068 (2012).

    Article  CAS  PubMed  Google Scholar 

  108. Vogel, T., Brockmann, J. G., Coussios, C. & Friend, P. J. The role of normothermic extracorporeal perfusion in minimizing ischemia reperfusion injury. Transplant. Rev. 26, 156–162 (2012).

    Article  Google Scholar 

  109. Ravikumar, R., Leuvenink, H. & Friend, P. J. Normothermic liver preservation: a new paradigm? Transpl. Int. 28, 690–699 (2015).

    Article  CAS  PubMed  Google Scholar 

  110. Messer, S., Ardehali, A. & Tsui, S. Normothermic donor heart perfusion: current clinical experience and the future. Transpl. Int. 28, 634–642 (2015).

    Article  PubMed  Google Scholar 

  111. Cypel, M. et al. Normothermic ex vivo lung perfusion in clinical lung transplantation. N. Engl. J. Med. 364, 1431–1440 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Van Raemdonck, D., Neyrinck, A., Cypel, M. & Keshavjee, S. Ex-vivo lung perfusion. Transpl. Int. 28, 643–656 (2015).

    Article  PubMed  Google Scholar 

  113. Cypel, M. et al. Normothermic ex vivo perfusion prevents lung injury compared to extended cold preservation for transplantation. Am. J. Transplant. 9, 2262–2269 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. St Peter, S. D., Imber, C. J., Lopez, I., Hughes, D. & Friend, P. J. Extended preservation of non-heart-beating donor livers with normothermic machine perfusion. Br. J. Surg. 89, 609–616 (2002).

    Article  Google Scholar 

  116. Xu, H. et al. Excorporeal normothermic machine perfusion resuscitates pig DCD livers with extended warm ischemia. J. Surg. Res. 173, e83–e88 (2012).

    Article  PubMed  Google Scholar 

  117. Eshmuminov, D. et al. An integrated perfusion machine preserves injured human livers for 1 week. Nat. Biotechnol. 38, 189–198 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Berendsen, T. A. et al. A simplified subnormothermic machine perfusion system restores ischemically damaged liver grafts in a rat model of orthotopic liver transplantation. Transpl. Res. 1, 6 (2012).

    Article  Google Scholar 

  119. Tolboom, H. et al. Subnormothermic machine perfusion at both 20 °C and 30 °C recovers ischemic rat livers for successful transplantation. J. Surg. Res. 175, 149–156 (2012).

    Article  PubMed  Google Scholar 

  120. Bruinsma, B. G. et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am. J. Transpl. 14, 1400–1409 (2014).

    Article  CAS  Google Scholar 

  121. Bruinsma, B. G. et al. Metabolic profiling during ex vivo machine perfusion of the human liver. Sci. Rep. 6, 22415 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Berendsen, T. A. et al. Supercooling enables long-term transplantation survival following 4 days of liver preservation. Nat. Med. 20, 790–793 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Guarrera, J. V. et al. Hypothermic machine preservation in human liver transplantation: the first clinical series. Am. J. Transpl. 10, 372–381 (2010).

    Article  CAS  Google Scholar 

  124. Moers, C. et al. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 360, 7–19 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Moers, C., Pirenne, J., Paul, A., Ploeg, R. J. & Machine Preservation Trial Study Group. Machine perfusion or cold storage in deceased-donor kidney transplantation. N. Engl. J. Med. 366, 770–771 (2012).

    Article  CAS  PubMed  Google Scholar 

  126. Hoyer, D. P. et al. Controlled oxygenated rewarming of cold stored livers prior to transplantation: first clinical application of a new concept. Transplantation 100, 147–152 (2016).

    Article  CAS  PubMed  Google Scholar 

  127. Hoyer, D. P., Paul, A. & Minor, T. Prediction of hepatocellular preservation injury immediately before human liver transplantation by controlled oxygenated rewarming. Transplant. Direct https://doi.org/10.1097/TXD.0000000000000636 (2017).

  128. Schopp, I., Reissberg, E., Luer, B., Efferz, P. & Minor, T. Controlled rewarming after hypothermia: adding a new principle to renal preservation. Clin. Transl. Sci. 8, 475–478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bruinsma, B. G. et al. Supercooling preservation and transplantation of the rat liver. Nat. Protoc. 10, 484–494 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Robinson, W. R., Peters, R. H. & Zimmermann, J. The effects of body size and temperature on metabolic rate of organisms. Can. J. Zool. 61, 281–288 (1983).

    Article  Google Scholar 

  131. Belzer, F. O. & Southard, J. H. Principles of solid-organ preservation by cold storage. Transplantation 45, 673–676 (1988).

    Article  CAS  PubMed  Google Scholar 

  132. Weeder, P. D., van Rijn, R. & Porte, R. J. Machine perfusion in liver transplantation as a tool to prevent non-anastomotic biliary strictures: rationale, current evidence and future directions. J. Hepatol. 63, 265–275 (2015).

    Article  PubMed  Google Scholar 

  133. de Perrot, M. et al. Report of the ISHLT working group on primary lung graft dysfunction part III: donor-related risk factors and markers. J. Heart Lung Transpl. 24, 1460–1467 (2005).

    Article  Google Scholar 

  134. Snyder, K. K., Baust, J. M., Van Buskirk, R. G. & Baust, J. G. Enhanced hypothermic storage of neonatal cardiomyocytes. Cell Preserv. Technol. 3, 61–74 (2005).

    Article  CAS  Google Scholar 

  135. Pogozhykh, D., Prokopyuk, V., Pogozhykh, O., Mueller, T. & Prokopyuk, O. Influence of factors of cryopreservation and hypothermic storage on survival and functional parameters of multipotent stromal cells of placental origin. PLoS ONE 10, e0139834 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Correia, C. et al. Effective hypothermic storage of human pluripotent stem cell-derived cardiomyocytes compatible with global distribution of cells for clinical applications and toxicology testing. Stem Cells Transl. Med 5, 658–669 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Groger, M. et al. Preservation of cell structure, metabolism, and biotransformation activity of liver-on-chip organ models by hypothermic storage. Adv. Healthc. Mater. 7, 1700616 (2018).

    Article  CAS  Google Scholar 

  138. Xu, Y., Mawatari, K., Konno, T., Kitamori, T. & Ishihara, K. Spontaneous packaging and hypothermic storage of mammalian cells with a cell-membrane-mimetic polymer hydrogel in a microchip. ACS Appl. Mater. Interfaces 7, 23089–23097 (2015).

    Article  CAS  PubMed  Google Scholar 

  139. Southard, J. H. & Belzer, F. O. Organ preservation. Annu. Rev. Med. 46, 235–247 (1995).

    Article  CAS  PubMed  Google Scholar 

  140. McAnulty, J. F. Hypothermic organ preservation by static storage methods: current status and a view to the future. Cryobiology 60, S13–S19 (2010).

    Article  PubMed  Google Scholar 

  141. Puts, C. F. et al. Polyethylene glycol protects primary hepatocytes during supercooling preservation. Cryobiology 71, 125–129 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. de Vries, R. J. et al. Supercooling extends preservation time of human livers. Nat. Biotechnol. 37, 1131–1136 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Huang, H., Yarmush, M. L. & Usta, O. B. Long-term deep-supercooling of large-volume water and red cell suspensions via surface sealing with immiscible liquids. Nat. Commun. 9, 3201 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Cox, S. J., Kathmann, S. M., Slater, B. & Michaelides, A. Molecular simulations of heterogeneous ice nucleation. I. Controlling ice nucleation through surface hydrophilicity. J. Chem. Phys. 142, 184704 (2015).

    Article  PubMed  CAS  Google Scholar 

  145. Shaw, R. A., Durant, A. J. & Mi, Y. Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem. B 109, 9865–9868 (2005).

    Article  CAS  PubMed  Google Scholar 

  146. Tabazadeh, A., Djikaev, Y. S. & Reiss, H. Surface crystallization of supercooled water in clouds. Proc. Natl Acad. Sci. USA 99, 15873–15878 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huang, H., Rey-Bedón, C., Yarmush, M. L. & Usta, O. B. Deep-supercooling for extended preservation of adipose-derived stem cells. Cryobiology 92, 67–75 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Charlton, S. J. et al. Strong heterogeneity in advances in cryopreservation techniques in the mammalian orders. Zool. Sci. 35, 1–22 (2018).

    Article  Google Scholar 

  149. Hunt, C. J. Technical considerations in the freezing, low-temperature storage and thawing of stem cells for cellular therapies. Transfus. Med. Hemother. 46, 134–150 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Meyer, H. Women ‘are being given false hope’ over freezing eggs. The Guardian (24 October 2014); https://www.theguardian.com/society/2015/oct/24/women-false-hope-freezing-eggs

  151. Faulkner, K., Bentley, P. & Smyth, S. IVF clinics peddling false hope over egg freezing: doctors caught on camera making wildly optimistic claims about the method’s success. The Daily Mail (2 May 2017); https://www.dailymail.co.uk/news/article-4467352/Desperate-women-duped-freezing-eggs.html

  152. Wang, X. & Riviere, I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3, 16015 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Liu, D. & Pan, F. Advances in cryopreservation of organs. J. Huazhong Univ. Sci. Technol. Med. Sci. 36, 153–161 (2016).

    Article  Google Scholar 

  154. Sharpe, M. E., Morton, D. & Rossi, A. Nonclinical safety strategies for stem cell therapies. Toxicol. Appl. Pharmacol. 262, 223–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Bissoyi, A., Nayak, B., Pramanik, K. & Sarangi, S. K. Targeting cryopreservation-induced cell death: a review. Biopreserv. Biobank. 12, 23–34 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Yagi, T. et al. Caspase inhibition reduces apoptotic death of cryopreserved porcine hepatocytes. Hepatology 33, 1432–1440 (2001).

    Article  CAS  PubMed  Google Scholar 

  157. Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and IPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Dittmar, K. E. et al. Quality of cell products: authenticity, identity, genomic stability and status of differentiation. Transfus. Med. Hemother. 37, 57–64 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Iwatani, M. et al. Dimethyl sulfoxide has an impact on epigenetic profile in mouse embryoid body. Stem Cells 24, 2549–2556 (2006).

    Article  CAS  PubMed  Google Scholar 

  160. Chatterjee, A. et al. Effects of cryopreservation on the epigenetic profile of cells. Cryobiology 74, 1–7 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Browne, J., Tunnacliffe, A. & Burnell, A. Anhydrobiosis—plant desiccation gene found in a nematode. Nature 416, 38–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  162. Yang, J. et al. Exploring the potential of biocompatible osmoprotectants as highly efficient cryoprotectants. ACS Appl. Mater. Interfaces 9, 42516–42524 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Stewart, S. & He, X. M. Intracellular delivery of trehalose for cell banking. Langmuir 35, 7414–7422 (2019).

    Article  CAS  PubMed  Google Scholar 

  164. Zhang, Y. T. et al. Cold-responsive nanoparticle enables intracellular delivery and rapid release of trehalose for organic-solvent-free cryopreservation. Nano Lett. 19, 9051–9061 (2019).

    Article  CAS  PubMed  Google Scholar 

  165. Parmegiani, L., Cognigni, G. E. & Filicori, M. Ultra-violet sterilization of liquid nitrogen prior to vitrification. Hum. Reprod. 24, 2969 (2009).

    Article  PubMed  Google Scholar 

  166. Eren, E. A. et al. Donations after circulatory death in liver transplant. Exp. Clin. Transpl. 14, 463–470 (2016).

    Google Scholar 

  167. Zhang, Z. B., Gao, W., Liu, L., Shi, Y. & Shen, Z. Y. Development and assessment of normothermic machine perfusion preservation for extracorporeal splitting of pig liver. Ann. Transpl. 22, 507–517 (2017).

    Article  CAS  Google Scholar 

  168. Ratner, B. D., Hoffman, A. S., Schoen, F. J. & Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine (Elsevier, 2004).

  169. Juliano, L., Eastwood, G., Berard, T. & Mathew, A. J. The importance of collection, processing and biopreservation best practices in determining CAR-T starting material quality. Cell Gene Ther. Insights 4, 327–336 (2018).

    Article  Google Scholar 

  170. Hawkins, B. J., Abazari, A. & Mathew, A. J. Biopreservation best practices for regenerative medicine GMP manufacturing & focus on optimized biopreservation media. Cell Gene Ther. Insights 3, 345–358 (2017).

    Article  Google Scholar 

  171. Hong, Y. et al. A survey on the awareness and knowledge about elective oocyte cryopreservation among unmarried women of reproductive age visiting a private fertility center. Obstet. Gynecol. Sci. 62, 438 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Habka, D., Mann, D., Landes, R. & Soto-Gutierrez, A. Future economics of liver transplantation: a 20-year cost modeling forecast and the prospect of bioengineering autologous liver grafts. PLoS ONE 10, e0131764 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Household Income in the United States (Statistical Atlas, 2018); https://statisticalatlas.com/United-States/Household-Income

  174. Wang, L., Huang, X. & Liu, X. On the ethical and legal problems of single women’s ‘frozen eggs’. Med. Jurisprud. 7, 33 (2015); https://xueshu.baidu.com/usercenter/paper/show?paperid=c2c90868c2099c115f3cbb4bbfe8b797&site=xueshu_se

  175. Personalized Stem Cells, Inc. announces FDA approval of IND application for treatment of osteoarthritis with stem cells. Personalized Stem Cells, Inc. (22 July 2019); https://personalizedstemcells.com/wp-content/uploads/2019/08/Personalized-Stem-Cells-Inc.-Announces-FDA-Approval-of-IND-Application-for-Treatment-of-Osteoarthritis-with-Stem-Cells-July-22-2019.pdf

  176. Pellegrini, G. et al. Navigating market authorization: the path Holoclar took to become the first stem cell product approved in the European Union. Stem Cells Transl. Med. 7, 146–154 (2018).

    Article  PubMed  Google Scholar 

  177. Risco, R., Elmoazzen, H., Doughty, M., He, X. & Toner, M. Thermal performance of quartz capillaries for vitrification. Cryobiology 55, 222–229 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial funding for this work from NIH grants P41EB002503 and R01EB023632, NSF grant CBET-1831019 and NSFC grant 52076157 and from Xi’an Jiaotong University (Young Talent Support Program).

Author information

Authors and Affiliations

Authors

Contributions

H.H. and M.L.Y. conceived the project. H.H. performed the literature review and wrote the manuscript draft. H.H. and X.H. discussed the content and revised the manuscript.

Corresponding authors

Correspondence to Haishui Huang, Xiaoming He or Martin L. Yarmush.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Stefan Schneeberger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., He, X. & Yarmush, M.L. Advanced technologies for the preservation of mammalian biospecimens. Nat Biomed Eng 5, 793–804 (2021). https://doi.org/10.1038/s41551-021-00784-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00784-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research